IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v65y2003i1p247-255.html
   My bibliography  Save this article

Posterior bimodality in the balanced one‐way random‐effects model

Author

Listed:
  • Jiannong Liu
  • James S. Hodges

Abstract

Summary. Although some researchers have examined posterior multimodality for specific richly parameterized models, multimodality is not well characterized for any such model. The paper characterizes bimodality of the joint and marginal posteriors for a conjugate analysis of the balanced one‐way random‐effects model with a flat prior on the mean. This apparently simple model has surprisingly complex and even bizarre mode behaviour. Bimodality usually arises when the data indicate a much larger between‐groups variance than does the prior. We examine an example in detail, present a graphical display for describing bimodality and use real data sets from a statistical practice to shed light on the practical relevance of bimodality for these models.

Suggested Citation

  • Jiannong Liu & James S. Hodges, 2003. "Posterior bimodality in the balanced one‐way random‐effects model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 247-255, February.
  • Handle: RePEc:bla:jorssb:v:65:y:2003:i:1:p:247-255
    DOI: 10.1111/1467-9868.00384
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00384
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    2. Hua Zhou & Kenneth L. Lange, 2010. "On the Bumpy Road to the Dominant Mode," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 612-631, December.
    3. He, Yi & Hodges, James S., 2008. "Point estimates for variance-structure parameters in Bayesian analysis of hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2560-2577, January.
    4. Lisa Henn & James S. Hodges, 2014. "Multiple Local Maxima in Restricted Likelihoods and Posterior Distributions for Mixed Linear Models," International Statistical Review, International Statistical Institute, vol. 82(1), pages 90-105, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:65:y:2003:i:1:p:247-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.