IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v63y2001i3p607-619.html
   My bibliography  Save this article

Parametric and semiparametric models for recapture and removal studies: a likelihood approach

Author

Listed:
  • Kani Chen

Abstract

Capture–recapture processes are biased samplings of recurrent event processes, which can be modelled by the Andersen–Gill intensity model. The intensity function is assumed to be a function of time, covariates and a parameter. We derive the maximum likelihood estimators of both the parameter and the population size and show the consistency and asymptotic normality of the estimators for both recapture and removal studies. The estimators are asymptotically efficient and their theoretical asymptotic relative efficiencies with respect to the existing estimators of Yip and co‐workers can be as large as ∞. The variance estimation and a numerical example are also presented.

Suggested Citation

  • Kani Chen, 2001. "Parametric and semiparametric models for recapture and removal studies: a likelihood approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 607-619.
  • Handle: RePEc:bla:jorssb:v:63:y:2001:i:3:p:607-619
    DOI: 10.1111/1467-9868.00302
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00302
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    2. Li, Haoqi & Lin, Huazhen & Yip, Paul S.F. & Li, Yuan, 2019. "Estimating population size of heterogeneous populations with large data sets and a large number of parameters," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 34-44.
    3. Jing Cheng & Jing Qin & Biao Zhang, 2009. "Semiparametric estimation and inference for distributional and general treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 881-904, September.
    4. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:63:y:2001:i:3:p:607-619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.