IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v63y2001i3p569-582.html
   My bibliography  Save this article

Local likelihood tracking of fault lines and boundaries

Author

Listed:
  • Peter Hall
  • Liang Peng
  • Christian Rau

Abstract

We suggest locally parametric methods for estimating curves, such as boundaries of density supports or fault lines in response surfaces, in a variety of spatial problems. The methods are based on spatial approximations to the local likelihood that the curve passes through a given point in the plane, as a function of that point. The local likelihood might be a regular likelihood computed locally, with kernel weights (e.g. in the case of support boundary estimation) or a local version of a likelihood ratio statistic (e.g. in fault line estimation). In either case, the local likelihood surface represents a function which is relatively large near the target curve, and relatively small elsewhere. Therefore, the curve may be estimated as a ridge line of the surface; we require only a numerical algorithm for tracking the projection of a ridge into the plane. This approach offers several potential advantages over alternative methods. First, the local (log‐)likelihood surface can be graphed, and the degree of ‘ridginess’ assessed visually, to determine how the level of local smoothing should be varied in different spatial locations in order to emphasize the ridge and hence the curve adequately. Secondly, the local likelihood surface does not need to be computed in anything like its entirety; once we have a reasonable approximation to a point on the curve we may track it by numerically ‘walking along’ the ridge line. Thirdly, the method is appropriate without change for many different types of spatial explanatory variables—gridded, stochastic or otherwise. Three examples are explored in detail; fault lines in response surfaces and in intensity or density surfaces, and boundaries of supports of probability densities.

Suggested Citation

  • Peter Hall & Liang Peng & Christian Rau, 2001. "Local likelihood tracking of fault lines and boundaries," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 569-582.
  • Handle: RePEc:bla:jorssb:v:63:y:2001:i:3:p:569-582
    DOI: 10.1111/1467-9868.00299
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00299
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peihua Qiu, 2009. "Jump-preserving surface reconstruction from noisy data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 715-751, September.
    2. Cheng, Ming-Yen & Hall, Peter, 2006. "Methods for tracking support boundaries with corners," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1870-1893, September.
    3. Bowman, Adrian W. & Katina, Stanislav & Smith, Joanna & Brown, Denise, 2015. "Anatomical curve identification," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 52-64.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:63:y:2001:i:3:p:569-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.