IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v62y2000i4p827-838.html
   My bibliography  Save this article

Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood

Author

Listed:
  • David M. Zucker
  • Offer Lieberman
  • Orly Manor

Abstract

The mixed linear model is a popular method for analysing unbalanced repeated measurement data. The classical statistical tests for parameters in this model are based on asymptotic theory that is unreliable in the small samples that are often encountered in practice. For testing a given fixed effect parameter with a small sample, we develop and investigate refined likelihood ratio (LR) tests. The refinements considered are the Bartlett correction and use of the Cox–Reid adjusted likelihood; these are examined separately and in combination. We illustrate the various LR tests on an actual data set and compare them in two simulation studies. The conventional LR test yields type I error rates that are higher than nominal. The adjusted LR test yields rates that are lower than nominal, with absolute accuracy similar to that of the conventional LR test in the first simulation study and better in the second. The Bartlett correction substantially improves the accuracy of the type I error rates with either the conventional or the adjusted LR test. In many cases, error rates that are very close to nominal are achieved with the refined methods.

Suggested Citation

  • David M. Zucker & Offer Lieberman & Orly Manor, 2000. "Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 827-838.
  • Handle: RePEc:bla:jorssb:v:62:y:2000:i:4:p:827-838
    DOI: 10.1111/1467-9868.00267
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00267
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ito, Tsubasa & Sugasawa, Shonosuke, 2021. "Improved confidence regions in meta-analysis of diagnostic test accuracy," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    2. Yoshifumi Ukyo & Hisashi Noma & Kazushi Maruo & Masahiko Gosho, 2019. "Improved Small Sample Inference Methods for a Mixed-Effects Model for Repeated Measures Approach in Incomplete Longitudinal Data Analysis," Stats, MDPI, vol. 2(2), pages 1-15, March.
    3. Melo, Tatiane F.N. & Ferrari, Silvia L.P. & Cribari-Neto, Francisco, 2009. "Improved testing inference in mixed linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2573-2582, May.
    4. Stein, Markus Chagas & da Silva, Michel Ferreira & Duczmal, Luiz Henrique, 2014. "Alternatives to the usual likelihood ratio test in mixed linear models," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 184-197.
    5. David M. Zucker & Jonathan Denne, 2002. "Sample–Size Redetermination for Repeated Measures Studies," Biometrics, The International Biometric Society, vol. 58(3), pages 548-559, September.
    6. Vargas, Tiago M. & Ferrari, Silvia L.P. & Lemonte, Artur J., 2014. "Improved likelihood inference in generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 110-124.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:62:y:2000:i:4:p:827-838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.