IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v61y1999i4p863-879.html
   My bibliography  Save this article

Bayesian inference for semiparametric regression using a Fourier representation

Author

Listed:
  • P. J. Lenk

Abstract

This paper presents the Bayesian analysis of a semiparametric regression model that consists of parametric and nonparametric components. The nonparametric component is represented with a Fourier series where the Fourier coefficients are assumed a priori to have zero means and to decay to 0 in probability at either algebraic or geometric rates. The rate of decay controls the smoothness of the response function. The posterior analysis automatically selects the amount of smoothing that is coherent with the model and data. Posterior probabilities of the parametric and semiparametric models provide a method for testing the parametric model against a non‐specific alternative. The Bayes estimator’s mean integrated squared error compares favourably with the theoretically optimal estimator for kernel regression.

Suggested Citation

  • P. J. Lenk, 1999. "Bayesian inference for semiparametric regression using a Fourier representation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 863-879.
  • Handle: RePEc:bla:jorssb:v:61:y:1999:i:4:p:863-879
    DOI: 10.1111/1467-9868.00207
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00207
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongchang Hu & Yu Zhang & Xiong Pan, 2016. "Asymptotic normality of DHD estimators in a partially linear model," Statistical Papers, Springer, vol. 57(3), pages 567-587, September.
    2. Jean-Yves Dauxois & Pierre Druilhet & Denys Pommeret, 2006. "A bayesian choice between poisson, binomial and negative binomial models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 423-432, September.
    3. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    4. Garnett P. McMillan & Timothy E. Hanson & Gabrielle Saunders & Frederick J. Gallun, 2013. "A two-component circular regression model for repeated measures auditory localization data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 515-534, August.
    5. Choi, Taeryon & Lee, Jaeyong & Roy, Anindya, 2009. "A note on the Bayes factor in a semiparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1316-1327, July.
    6. Lee, Jaeyong & Oh, Hee-Seok, 2013. "Bayesian regression based on principal components for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 175-192.
    7. Timothy J. Gilbride & Peter J. Lenk & Jeff D. Brazell, 2008. "Market Share Constraints and the Loss Function in Choice-Based Conjoint Analysis," Marketing Science, INFORMS, vol. 27(6), pages 995-1011, 11-12.
    8. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:61:y:1999:i:4:p:863-879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.