IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v60y1998i4p709-724.html
   My bibliography  Save this article

A class of local likelihood methods and near‐parametric asymptotics

Author

Listed:
  • S. Eguchi
  • J. Copas

Abstract

The local maximum likelihood estimate θ^t of a parameter in a statistical model f(x, θ) is defined by maximizing a weighted version of the likelihood function which gives more weight to observations in the neighbourhood of t. The paper studies the sense in which f(t, θ^t) is closer to the true distribution g(t) than the usual estimate f(t, θ^) is. Asymptotic results are presented for the case in which the model misspecification becomes vanishingly small as the sample size tends to ∞. In this setting, the relative entropy risk of the local method is better than that of maximum likelihood. The form of optimum weights for the local likelihood is obtained and illustrated for the normal distribution.

Suggested Citation

  • S. Eguchi & J. Copas, 1998. "A class of local likelihood methods and near‐parametric asymptotics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 709-724.
  • Handle: RePEc:bla:jorssb:v:60:y:1998:i:4:p:709-724
    DOI: 10.1111/1467-9868.00150
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00150
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:60:y:1998:i:4:p:709-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.