IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v60y1998i3p609-626.html
   My bibliography  Save this article

Boundary detection through dynamic polygons

Author

Listed:
  • A. Pievatolo
  • P. J. Green

Abstract

A method for the Bayesian restoration of noisy binary images portraying an object with constant grey level on a background is presented. The restoration, performed by fitting a polygon with any number of sides to the object's outline, is driven by a new probabilistic model for the generation of polygons in a compact subset of R2, which is used as a prior distribution for the polygon. Some measurability issues raised by the correct specification of the model are addressed. The simulation from the prior and the calculation of the a posteriori mean of grey levels are carried out through reversible jump Markov chain Monte Carlo computation, whose implementation and convergence properties are also discussed. One example of restoration of a synthetic image is presented and compared with existing pixel‐based methods.

Suggested Citation

  • A. Pievatolo & P. J. Green, 1998. "Boundary detection through dynamic polygons," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 609-626.
  • Handle: RePEc:bla:jorssb:v:60:y:1998:i:3:p:609-626
    DOI: 10.1111/1467-9868.00143
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00143
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stoica, R.S. & Gregori, P. & Mateu, J., 2005. "Simulated annealing and object point processes: Tools for analysis of spatial patterns," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1860-1882, November.
    2. Peters, G.W. & Sisson, S.A. & Fan, Y., 2012. "Likelihood-free Bayesian inference for α-stable models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3743-3756.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:60:y:1998:i:3:p:609-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.