IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v60y1998i3p559-578.html
   My bibliography  Save this article

Fast EM‐type implementations for mixed effects models

Author

Listed:
  • X.‐L. Meng
  • D. Van Dyk

Abstract

The mixed effects model, in its various forms, is a common model in applied statistics. A useful strategy for fitting this model implements EM‐type algorithms by treating the random effects as missing data. Such implementations, however, can be painfully slow when the variances of the random effects are small relative to the residual variance. In this paper, we apply the ‘working parameter’ approach to derive alternative EM‐type implementations for fitting mixed effects models, which we show empirically can be hundreds of times faster than the common EM‐type implementations. In our limited simulations, they also compare well with the routines in S‐PLUS® and Stata® in terms of both speed and reliability. The central idea of the working parameter approach is to search for efficient data augmentation schemes for implementing the EM algorithm by minimizing the augmented information over the working parameter, and in the mixed effects setting this leads to a transfer of the mixed effects variances into the regression slope parameters. We also describe a variation for computing the restricted maximum likelihood estimate and an adaptive algorithm that takes advantage of both the standard and the alternative EM‐type implementations.

Suggested Citation

  • X.‐L. Meng & D. Van Dyk, 1998. "Fast EM‐type implementations for mixed effects models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 559-578.
  • Handle: RePEc:bla:jorssb:v:60:y:1998:i:3:p:559-578
    DOI: 10.1111/1467-9868.00140
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00140
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:60:y:1998:i:3:p:559-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.