IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022is2ps170-s196.html
   My bibliography  Save this article

Intercensal updating using structure‐preserving methods and satellite imagery

Author

Listed:
  • Till Koebe
  • Alejandra Arias‐Salazar
  • Natalia Rojas‐Perilla
  • Timo Schmid

Abstract

Censuses are fundamental building blocks of most modern‐day societies, yet collected every 10 years at best. We propose an extension of the widely popular census updating technique structure‐preserving estimation by incorporating auxiliary information in order to take ongoing subnational population shifts into account. We apply our method by incorporating satellite imagery as additional source to derive annual small‐area updates of multidimensional poverty indicators from 2013 to 2020 for a population at risk: female‐headed households in Senegal. We evaluate the performance of our proposal using data from two different census periods.

Suggested Citation

  • Till Koebe & Alejandra Arias‐Salazar & Natalia Rojas‐Perilla & Timo Schmid, 2022. "Intercensal updating using structure‐preserving methods and satellite imagery," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 170-196, December.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:s2:p:s170-s196
    DOI: 10.1111/rssa.12802
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12802
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Angela Luna & Li-Chun Zhang & Alison Whitworth & Kirsten Piller, 2015. "Small Area Estimates Of The Population Distribution By Ethnic Group In England: A Proposal Using Structure Preserving Estimators," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 585-602, December.
    2. Till Koebe, 2020. "Better coverage, better outcomes? Mapping mobile network data to official statistics using satellite imagery and radio propagation modelling," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-28, November.
    3. Maxim Pinkovskiy & Xavier Sala-i-Martin, 2016. "Lights, Camera … Income! Illuminating the National Accounts-Household Surveys Debate," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 579-631.
    4. J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012. "Measuring Economic Growth from Outer Space," American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
    5. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    6. repec:bla:jorssa:v:180:y:2017:i:4:p:1163-1190 is not listed on IDEAS
    7. Douglas R. Leasure & Warren C. Jochem & Eric M. Weber & Vincent Seaman & Andrew J. Tatem, 2020. "National population mapping from sparse survey data: A hierarchical Bayesian modeling framework to account for uncertainty," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(39), pages 24173-24179, September.
    8. Alison Whitworth & Kirsten Piller & Angela Luna & Li-Chun Zhang, 2015. "Small area estimates of the population distribution by ethnic group in England: a proposal using structure preserving estimators," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 585-602, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beyer, Robert C.M. & Franco-Bedoya, Sebastian & Galdo, Virgilio, 2021. "Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity," World Development, Elsevier, vol. 140(C).
    2. Sumit Agarwal & Thomas Kigabo & Ms. Camelia Minoiu & Mr. Andrea F Presbitero & Andre Silva, 2018. "Financial Access Under the Microscope," IMF Working Papers 2018/208, International Monetary Fund.
    3. Krittaya Sangkasem & Nattapong Puttanapong, 2022. "Analysis of spatial inequality using DMSP‐OLS nighttime‐light satellite imageries: A case study of Thailand," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 828-849, August.
    4. Wei Tang & Geoffrey J.D. Hewings, 2017. "Do city–county mergers in China promote local economic development?," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 25(3), pages 439-469, July.
    5. Prakash, Nishith & Rockmore, Marc & Uppal, Yogesh, 2019. "Do criminally accused politicians affect economic outcomes? Evidence from India," Journal of Development Economics, Elsevier, vol. 141(C).
    6. Dickinson, Jeffrey, 2020. "Planes, Trains, and Automobiles: What Drives Human-Made Light?," MPRA Paper 103504, University Library of Munich, Germany.
    7. Michał Myck & Mateusz Najsztub, 2020. "Implications of the Polish 1999 administrative reform for regional socio‐economic development," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 28(4), pages 559-579, October.
    8. Alexandre Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2023. "Satellites Turn “Concrete”: Tracking Cement with Satellite Data and Neural Networks," Working papers 916, Banque de France.
    9. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    10. Edward J. Oughton & Jatin Mathur, 2020. "Predicting cell phone adoption metrics using satellite imagery," Papers 2006.07311, arXiv.org, revised Jun 2021.
    11. Clark, Hunter & Pinkovskiy, Maxim & Sala-i-Martin, Xavier, 2020. "China's GDP growth may be understated," China Economic Review, Elsevier, vol. 62(C).
    12. Baragwanath, Kathryn & Goldblatt, Ran & Hanson, Gordon & Khandelwal, Amit K., 2021. "Detecting urban markets with satellite imagery: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    13. Priyaranjan Jha & Karan Talathi, 2023. "Trade liberalization and local development in India: evidence from nighttime lights," Indian Economic Review, Springer, vol. 58(1), pages 61-83, July.
    14. Donn L Feir & Rob Gillezeau & Maggie E C Jones, 2024. "The Slaughter of the Bison and Reversal of Fortunes on the Great Plains," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(3), pages 1634-1670.
    15. Mircea Epure & Irina Mihai & Camelia Minoiu & José-Luis Peydró, 2024. "Global Financial Cycle, Household Credit, and Macroprudential Policies," Management Science, INFORMS, vol. 70(11), pages 8096-8115, November.
    16. Indaco, Agustín, 2020. "From twitter to GDP: Estimating economic activity from social media," Regional Science and Urban Economics, Elsevier, vol. 85(C).
    17. Piotr Wójcik & Krystian Andruszek, 2022. "Predicting intra‐urban well‐being from space with nonlinear machine learning," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 891-913, August.
    18. José García-Montalvo & Marta Reynal-Querol & Juan Carlos Muñoz Mora, 2021. "Measuring Inequality from Above," Working Papers 1252, Barcelona School of Economics.
    19. van der Weide, Roy & Blankespoor, Brian & Elbers, Chris & Lanjouw, Peter, 2024. "How accurate is a poverty map based on remote sensing data? An application to Malawi," Journal of Development Economics, Elsevier, vol. 171(C).
    20. Jaqueson K. Galimberti, 2020. "Forecasting GDP Growth from Outer Space," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 697-722, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:s2:p:s170-s196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.