IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v182y2019i4p1463-1486.html
   My bibliography  Save this article

Estimating the number of serious road injuries per vehicle type in the Netherlands by using multiple imputation of latent classes

Author

Listed:
  • Laura Boeschoten
  • Ton de Waal
  • Jeroen K. Vermunt

Abstract

Statistics that are published by official agencies are often generated by using population registries, which are likely to contain classification errors and missing values. A method that simultaneously handles classification errors and missing values is multiple imputation of latent classes (MILC). We apply the MILC method to estimate the number of serious road injuries per vehicle type in the Netherlands and to stratify the number of serious road injuries per vehicle type into relevant subgroups by using data from two registries. For this specific application, the MILC method is extended to handle the large number of missing values in the stratification variable ‘region of accident’ and to include more stratification covariates. After applying the extended MILC method, a multiply imputed data set is generated that can be used to create statistical figures in a straightforward manner, and that incorporates uncertainty due to classification errors and missing values in the estimate of the total variance.

Suggested Citation

  • Laura Boeschoten & Ton de Waal & Jeroen K. Vermunt, 2019. "Estimating the number of serious road injuries per vehicle type in the Netherlands by using multiple imputation of latent classes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1463-1486, October.
  • Handle: RePEc:bla:jorssa:v:182:y:2019:i:4:p:1463-1486
    DOI: 10.1111/rssa.12471
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12471
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter G. M. van der Heijden & Maarten Cruyff & Paul A. Smith & Christine Bycroft & Patrick Graham & Nathaniel Matheson‐Dunning, 2022. "Multiple system estimation using covariates having missing values and measurement error: Estimating the size of the Māori population in New Zealand," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 156-177, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:182:y:2019:i:4:p:1463-1486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.