IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v182y2019i4p1267-1286.html
   My bibliography  Save this article

Exposure at default without conversion factors—evidence from Global Credit Data for large corporate revolving facilities

Author

Listed:
  • Mark Thackham
  • Jun Ma

Abstract

Credit granting institutions are in the business of lending money to customers, some of whom subsequently fail to repay as promised. For these events, accurate loan balance estimates—termed exposure at default (EAD)—provide quantification of potential losses and form a required input to minimum credit capital calculation under the Basel II Accord. Most available EAD research estimates the credit conversion factor (CCF), which is a transform of EAD, but as we highlight this has substantial deficiencies: an inherent singularity rendering the CCF undefined or numerically unstable and it often provides EAD estimates that fail economic intuition. We build a descriptive model for EAD—without relying on the CCF—using the Global Credit Data database, advancing the literature in three important ways. First we identify, like other studies on revolving facilities, that balance and limits drive EAD and we therefore develop our model to capture these joint dynamics flexibly. Second we find evidence in the data of risk‐based line management where lenders tend to decrease limits for riskier obligors. Third we confirm results from other studies of mild EAD countercyclicality, whereby EAD is lower during a subdued economy.

Suggested Citation

  • Mark Thackham & Jun Ma, 2019. "Exposure at default without conversion factors—evidence from Global Credit Data for large corporate revolving facilities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1267-1286, October.
  • Handle: RePEc:bla:jorssa:v:182:y:2019:i:4:p:1267-1286
    DOI: 10.1111/rssa.12418
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12418
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer Betz & Maximilian Nagl & Daniel Rösch, 2022. "Credit line exposure at default modelling using Bayesian mixed effect quantile regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2035-2072, October.
    2. Oliver Blümke, 2020. "Estimating the probability of default for no‐default and low‐default portfolios," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(1), pages 89-107, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:182:y:2019:i:4:p:1267-1286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.