IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v182y2019i4p1227-1246.html
   My bibliography  Save this article

Retail credit scoring using fine‐grained payment data

Author

Listed:
  • Ellen Tobback
  • David Martens

Abstract

Banks are continuously looking for novel ways to leverage their existing data assets. A major source of data that has not yet been used to the full extent is massive fine‐grained payment data on the bank's customers. In the paper, a design is proposed that builds predictive credit scoring models by using the fine‐grained payment data. Using a real life data set of 183 million transactions made by 2.6 million customers, we show that the scalable implementation that is put forward leads to a significant improvement in the receiver operating characteristic area under the curve, with only seconds of computation needed. When investigating the 1% riskiest customers, twice as many defaulters are detected when using the payment data. Such an improvement has a big effect on the overall working of the bank, from applicant scoring to minimum capital requirements.

Suggested Citation

  • Ellen Tobback & David Martens, 2019. "Retail credit scoring using fine‐grained payment data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1227-1246, October.
  • Handle: RePEc:bla:jorssa:v:182:y:2019:i:4:p:1227-1246
    DOI: 10.1111/rssa.12469
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12469
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Deryugina & Alexey Ponomarenko & Andrey Sinyakov, 2021. "Exploring the conjunction between the structures of deposit and credit markets in the digital economy under information asymmetry," Bank of Russia Working Paper Series wps78, Bank of Russia.
    2. Kyriakos Georgiou & Athanasios N. Yannacopoulos, 2023. "Probability of Default modelling with L\'evy-driven Ornstein-Uhlenbeck processes and applications in credit risk under the IFRS 9," Papers 2309.12384, arXiv.org.
    3. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    4. Königstorfer, Florian & Thalmann, Stefan, 2020. "Applications of Artificial Intelligence in commercial banks – A research agenda for behavioral finance," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:182:y:2019:i:4:p:1227-1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.