Model‐based county level crop estimates incorporating auxiliary sources of information
Author
Abstract
Suggested Citation
DOI: 10.1111/rssa.12390
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lu Chen & Luca Sartore & Habtamu Benecha & Valbona Bejleri & Balgobin Nandram, 2022. "Smoothing County-Level Sampling Variances to Improve Small Area Models’ Outputs," Stats, MDPI, vol. 5(3), pages 1-18, September.
- Merfeld, Joshua D. & Newhouse, David & Weber, Michael & Lahiri, Partha, 2022.
"Combining Survey and Geospatial Data Can Significantly Improve Gender-Disaggregated Estimates of Labor Market Outcomes,"
IZA Discussion Papers
15390, Institute of Labor Economics (IZA).
- Merfeld,Joshua David & Newhouse,David Locke & Weber,Michael & Lahiri,Partha, 2022. "Combining Survey and Geospatial Data Can Significantly Improve Gender-DisaggregatedEstimates of Labor Market Outcomes," Policy Research Working Paper Series 10077, The World Bank.
- Masaki,Takaaki & Newhouse,David Locke & Silwal,Ani Rudra & Bedada,Adane & Engstrom,Ryan, 2020. "Small Area Estimation of Non-Monetary Poverty with Geospatial Data," Policy Research Working Paper Series 9383, The World Bank.
- Nandram, Balgobin & Cruze, Nathan B & Erciulescu, Andreea L & Chen, Lu, 2022. "Bayesian Small Area Models under Inequality Constraints with Benchmarking and Double Shrinkage," NASS Research Reports 327250, United States Department of Agriculture, National Agricultural Statistics Service.
- Lu Chen & Balgobin Nandram, 2023. "Bayesian Logistic Regression Model for Sub-Areas," Stats, MDPI, vol. 6(1), pages 1-23, January.
- Linda J. Young & Lu Chen, 2022. "Using Small Area Estimation to Produce Official Statistics," Stats, MDPI, vol. 5(3), pages 1-17, September.
- Lu Chen & Nathan B. Cruze & Linda J. Young, 2022. "Model-Based Estimates for Farm Labor Quantities," Stats, MDPI, vol. 5(3), pages 1-17, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:182:y:2019:i:1:p:283-303. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.