IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v181y2018i3p843-867.html
   My bibliography  Save this article

Sensitivity of treatment recommendations to bias in network meta‐analysis

Author

Listed:
  • David M. Phillippo
  • Sofia Dias
  • A. E. Ades
  • Vanessa Didelez
  • Nicky J. Welton

Abstract

Network meta‐analysis (NMA) pools evidence on multiple treatments to estimate relative treatment effects. Included studies are typically assessed for risk of bias; however, this provides no indication of the impact of potential bias on a decision based on the NMA. We propose methods to derive bias adjustment thresholds which measure the smallest changes to the data that result in a change of treatment decision. The methods use efficient matrix operations and can be applied to explore the consequences of bias in individual studies or aggregate treatment contrasts, in both fixed and random‐effects NMA models. Complex models with multiple types of data input are handled by using an approximation to the hypothetical aggregate likelihood. The methods are illustrated with a simple NMA of thrombolytic treatments and a more complex example comparing social anxiety interventions. An accompanying R package is provided.

Suggested Citation

  • David M. Phillippo & Sofia Dias & A. E. Ades & Vanessa Didelez & Nicky J. Welton, 2018. "Sensitivity of treatment recommendations to bias in network meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 843-867, June.
  • Handle: RePEc:bla:jorssa:v:181:y:2018:i:3:p:843-867
    DOI: 10.1111/rssa.12341
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12341
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu, Guobing & Ades, A.E., 2006. "Assessing Evidence Inconsistency in Mixed Treatment Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 447-459, June.
    2. N. J. Welton & A. E. Ades & J. B. Carlin & D. G. Altman & J. A. C. Sterne, 2009. "Models for potentially biased evidence in meta‐analysis using empirically based priors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 119-136, January.
    3. Naci, Huseyin & Dias, Sofia & Ades, A. E., 2014. "Industry sponsorship bias in research findings: a network meta-analysis of LDL cholesterol reduction in randomised trials of statins," LSE Research Online Documents on Economics 59798, London School of Economics and Political Science, LSE Library.
    4. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
    5. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    6. S. Dias & N. J. Welton & V. C. C. Marinho & G. Salanti & J. P. T. Higgins & A. E. Ades, 2010. "Estimation and adjustment of bias in randomized evidence by using mixed treatment comparison meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 613-629, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. M. Rhodes & J. Savović & R. Elbers & H. E. Jones & J. P. T. Higgins & J. A. C. Sterne & N. J. Welton & R. M. Turner, 2020. "Adjusting trial results for biases in meta‐analysis: combining data‐based evidence on bias with detailed trial assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 193-209, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Dias & N. J. Welton & V. C. C. Marinho & G. Salanti & J. P. T. Higgins & A. E. Ades, 2010. "Estimation and adjustment of bias in randomized evidence by using mixed treatment comparison meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 613-629, July.
    2. McCandless Lawrence C., 2012. "Meta-Analysis of Observational Studies with Unmeasured Confounders," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-31, January.
    3. K. M. Rhodes & J. Savović & R. Elbers & H. E. Jones & J. P. T. Higgins & J. A. C. Sterne & N. J. Welton & R. M. Turner, 2020. "Adjusting trial results for biases in meta‐analysis: combining data‐based evidence on bias with detailed trial assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 193-209, January.
    4. Mathur, Maya B & VanderWeele, Tyler, 2018. "Statistical methods for evidence synthesis," Thesis Commons kd6ja, Center for Open Science.
    5. Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
    6. Petra Schnell‐Inderst & Cynthia P. Iglesias & MARJAN Arvandi & ORIANA Ciani & Raffaella Matteucci Gothe & Jaime Peters & Ashley W. Blom & Rod S. Taylor & Uwe Siebert, 2017. "A bias‐adjusted evidence synthesis of RCT and observational data: the case of total hip replacement," Health Economics, John Wiley & Sons, Ltd., vol. 26(S1), pages 46-69, February.
    7. Manuel Antonio Espinoza & Andrea Manca & Karl Claxton & Mark Sculpher, 2018. "Social value and individual choice: The value of a choice‐based decision‐making process in a collectively funded health system," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 28-40, February.
    8. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    9. Basu, Anirban & Jena, Anupam B. & Philipson, Tomas J., 2011. "The impact of comparative effectiveness research on health and health care spending," Journal of Health Economics, Elsevier, vol. 30(4), pages 695-706, July.
    10. H. P. Piepho & E. R. Williams & L. V. Madden, 2012. "The Use of Two-Way Linear Mixed Models in Multitreatment Meta-Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1269-1277, December.
    11. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    12. Simon Eckermann & Tim Coelli, 2008. "Including quality attributes in a model of health care efficiency: A net benefit approach," CEPA Working Papers Series WP032008, School of Economics, University of Queensland, Australia.
    13. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    14. Frank G. Sandmann & Julie V. Robotham & Sarah R. Deeny & W. John Edmunds & Mark Jit, 2018. "Estimating the opportunity costs of bed‐days," Health Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 592-605, March.
    15. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    16. Clarke, Philip M. & Hayes, Alison J., 2009. "Measuring achievement: Changes in risk factors for cardiovascular disease in Australia," Social Science & Medicine, Elsevier, vol. 68(3), pages 552-561, February.
    17. Niklas Zethraeus & Magnus Johannesson & Bengt Jönsson & Mickael Löthgren & Magnus Tambour, 2003. "Advantages of Using the Net-Benefit Approach for Analysing Uncertainty in Economic Evaluation Studies," PharmacoEconomics, Springer, vol. 21(1), pages 39-48, January.
    18. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.
    19. Jordan Amdahl & Jose Diaz & Arati Sharma & Jinhee Park & David Chandiwana & Thomas E Delea, 2017. "Cost-effectiveness of pazopanib versus sunitinib for metastatic renal cell carcinoma in the United Kingdom," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    20. Howard Thom & Frank Ender & Saisudha Samavedam & Caridad Perez Vivez & Subhajit Gupta & Mukesh Dhariwal & Jan de Haan & Derek O’Boyle, 2019. "Effect of AcrySof versus other intraocular lens properties on the risk of Nd:YAG capsulotomy after cataract surgery: A systematic literature review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:181:y:2018:i:3:p:843-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.