IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v179y2016i1p153-175.html
   My bibliography  Save this article

Analysing behavioural risk factor surveillance data by using spatially and temporally varying coefficient models

Author

Listed:
  • Shireen Assaf
  • Stefano Campostrini
  • Fang Xu
  • Carol Gotway Crawford

Abstract

type="main" xml:id="rssa12114-abs-0001"> The study of temporal and spatial trends in large databases, such as behavioural risk factor surveillance data, can be a great challenge, especially when the intent is to study the time-related effects of multiple independent variables; this is an issue which is not usually addressed in trend analysis in epidemiological studies. This study demonstrates the use of varying coefficient models using non-parametric techniques, which can show how coefficients vary in time or space; it is a useful statistical tool that is applied for the first time to health surveillance data. Using the US ‘Behavioral risk factor surveillance system’, a varying coefficient model is constructed using obesity as an outcome measure. Odds ratio plots and probability maps illustrate the temporal or spatial changes in coefficients of the independent variables; these results can be used to identify changes in at-risk subgroups of the population for the odds of obesity.

Suggested Citation

  • Shireen Assaf & Stefano Campostrini & Fang Xu & Carol Gotway Crawford, 2016. "Analysing behavioural risk factor surveillance data by using spatially and temporally varying coefficient models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 153-175, January.
  • Handle: RePEc:bla:jorssa:v:179:y:2016:i:1:p:153-175
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.2016.179.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shireen Assaf & Stefano Campostrini & Cinzia Di Novi & Fang Xu & Carol Gotway Crawford, 2017. "Analyzing disparity trends for health care insurance coverage among non-elderly adults in the US: evidence from the Behavioral Risk Factor Surveillance System, 1993–2009," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 18(3), pages 387-398, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:179:y:2016:i:1:p:153-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.