IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v174y2011i3p689-712.html
   My bibliography  Save this article

Latent class profile analysis: an application to stage sequential processes in early onset drinking behaviours

Author

Listed:
  • Hwan Chung
  • James C. Anthony
  • Joseph L. Schafer

Abstract

No abstract is available for this item.

Suggested Citation

  • Hwan Chung & James C. Anthony & Joseph L. Schafer, 2011. "Latent class profile analysis: an application to stage sequential processes in early onset drinking behaviours," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(3), pages 689-712, July.
  • Handle: RePEc:bla:jorssa:v:174:y:2011:i:3:p:689-712
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brown, Sarah & Greene, William H. & Harris, Mark N. & Taylor, Karl, 2015. "An inverse hyperbolic sine heteroskedastic latent class panel tobit model: An application to modelling charitable donations," Economic Modelling, Elsevier, vol. 50(C), pages 228-236.
    2. Raslan Alzuabi & Sarah Brown & Mark N. Harris & Karl Taylor, 2024. "Modelling the composition of household portfolios: A latent class approach," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 57(1), pages 243-275, February.
    3. Deb, Partha & Gangaram, Anjelica & Khajavi, Hoda Nouri, 2021. "The impact of the State Innovation Models Initiative on population health," Economics & Human Biology, Elsevier, vol. 42(C).
    4. Lee, Jung Wun & Chung, Hwan & Jeon, Saebom, 2021. "Bayesian multivariate latent class profile analysis: Exploring the developmental progression of youth depression and substance use," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    5. Partha Deb & Anjelica Gangaram & Hoda Khajavi, 2019. "Can Diffuse Delivery System Reforms Improve Population Health? A Study of the State Innovation Models Initiative," NBER Working Papers 26360, National Bureau of Economic Research, Inc.
    6. Olde Kalter, Marie-José & La Paix Puello, Lissy & Geurs, Karst T., 2020. "Do changes in travellers’ attitudes towards car use and ownership over time affect travel mode choice? A latent transition approach in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 1-17.
    7. Chung, Hwan & Chang, Hsiu-Ching, 2012. "Bayesian approaches to the model selection problem in the analysis of latent stage-sequential process," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4097-4110.
    8. Sarah Brown & William Greene & Mark Harris, 2020. "A novel approach to latent class modelling: identifying the various types of body mass index individuals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 983-1004, June.
    9. Brown, Sarah & Greene, William H. & Harris, Mark N., 2014. "A New Formulation for Latent Class Models," IZA Discussion Papers 8283, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:174:y:2011:i:3:p:689-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.