IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v170y2007i1p133-147.html
   My bibliography  Save this article

Finding the best treatment under heavy censoring and hidden bias

Author

Listed:
  • Myoung‐jae Lee
  • Unto Häkkinen
  • Gunnar Rosenqvist

Abstract

Summary. We analyse male survival duration after hospitalization following an acute myocardial infarction with a large (N=11024) Finnish data set to find the best performing hospital district (and to disseminate its treatment protocol). This is a multiple‐treatment problem with 21 treatments (i.e. 21 hospital districts). The task of choosing the best treatment is difficult owing to heavy right censoring (73%), which makes the usual location measures (the mean and median) unidentified; instead, only lower quantiles are identified. There is also a sample selection issue that only those who made it to a hospital alive are observed (54%); this becomes a problem if we wish to know their potential survival duration after hospitalization, if they had survived to a hospital contrary to the fact. The data set is limited in its covariates—only age is available—but includes the distance to the hospital, which plays an interesting role. Given that only age and distance are observed, it is likely that there are unobserved confounders. To account for them, a sensitivity analysis is conducted following pair matching. All estimators employed point to a clear winner and the sensitivity analysis indicates that the finding is fairly robust.

Suggested Citation

  • Myoung‐jae Lee & Unto Häkkinen & Gunnar Rosenqvist, 2007. "Finding the best treatment under heavy censoring and hidden bias," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 133-147, January.
  • Handle: RePEc:bla:jorssa:v:170:y:2007:i:1:p:133-147
    DOI: 10.1111/j.1467-985X.2006.00442.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2006.00442.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2006.00442.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-1460, November.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    4. M.‐J. Lee & H. Kim, 1998. "Semiparametric econometric estimators for a truncated regression model: a review with an extension," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(2), pages 200-225, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Pao-Li & Lee, Myoung-Jae, 2011. "The WTO trade effect," Journal of International Economics, Elsevier, vol. 85(1), pages 53-71, September.
    2. Myoung-jae Lee, 2007. "Difference in Generalized-Differences with Panel Data: Effects of Moving from Private to Public School on Test Scores," Discussion Paper Series 0721, Institute of Economic Research, Korea University.
    3. Choi, Jin-young & Lee, Myoung-jae, 2019. "Twins are more different than commonly believed, but made less different by compensating behaviors," Economics & Human Biology, Elsevier, vol. 35(C), pages 18-31.
    4. Myoung‐jae Lee & Jin‐young Choi, 2022. "Finding mover–stayer quantile difference due to unobservables using quantile selection corrections," Bulletin of Economic Research, Wiley Blackwell, vol. 74(3), pages 704-721, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavsen, Geir Waehler, 2005. "Public Policies and the Demand for Carbonated Soft Drinks: A Censored Quantile Regression Approach," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24737, European Association of Agricultural Economists.
    2. Kenneth Y. Chay & James L. Powell, 2001. "Semiparametric Censored Regression Models," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 29-42, Fall.
    3. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    4. Sakata, Shinichi, 2007. "Instrumental variable estimation based on conditional median restriction," Journal of Econometrics, Elsevier, vol. 141(2), pages 350-382, December.
    5. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    6. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    7. Chen, Songnian & Khan, Shakeeb, 2000. "Estimating censored regression models in the presence of nonparametric multiplicative heteroskedasticity," Journal of Econometrics, Elsevier, vol. 98(2), pages 283-316, October.
    8. Guo, Jing & Wang, Lei & Zhang, Zhengyu, 2022. "Identification and estimation of a heteroskedastic censored regression model with random coefficient dummy endogenous regressors," Economic Modelling, Elsevier, vol. 110(C).
    9. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    10. Khan, Shakeeb & Lewbel, Arthur, 2007. "Weighted And Two-Stage Least Squares Estimation Of Semiparametric Truncated Regression Models," Econometric Theory, Cambridge University Press, vol. 23(2), pages 309-347, April.
    11. Deborah A. Cobb-Clark & Sonja C. Kassenboehmer & Mathias G. Sinning, 2013. "Locus of Control and Savings," Ruhr Economic Papers 0455, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    12. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    13. Eliana Christou & Michael G. Akritas, 2019. "Single index quantile regression for censored data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 655-678, December.
    14. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    15. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    17. Anil Kumar, 2012. "Nonparametric estimation of the impact of taxes on female labor supply," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 415-439, April.
    18. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    19. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
    20. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:170:y:2007:i:1:p:133-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.