Author
Listed:
- Benjamin Charles Germain Lee
Abstract
Within cultural heritage, there has been a growing and concerted effort to consider a critical sociotechnical lens when applying machine learning techniques to digital collections. Though the cultural heritage community has collectively developed an emerging body of work detailing responsible operations for machine learning in galleries, museums, archives, and libraries at the organizational level, there remains a paucity of guidelines created for researchers embarking on machine learning projects with digital collections. The manifold stakes and sensitivities involved in applying machine learning to cultural heritage underscore the importance of developing such guidelines. This article contributes to this need by formulating a detailed checklist with guiding questions and practices that can be employed while developing a machine learning project that utilizes cultural heritage data. I call the resulting checklist the “Collections as ML Data” checklist, which, when completed, can be published with the deliverables of the project. By surveying existing projects, including my own project, Newspaper Navigator, I justify the “Collections as ML Data” checklist and demonstrate how the formulated guiding questions can be employed by researchers.
Suggested Citation
Benjamin Charles Germain Lee, 2025.
"The “Collections as ML Data” checklist for machine learning and cultural heritage,"
Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 76(2), pages 375-396, February.
Handle:
RePEc:bla:jinfst:v:76:y:2025:i:2:p:375-396
DOI: 10.1002/asi.24765
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:76:y:2025:i:2:p:375-396. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.