IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v71y2020i5p578-595.html
   My bibliography  Save this article

Main path analysis on cyclic citation networks

Author

Listed:
  • Xiaorui Jiang
  • Xinghao Zhu
  • Jingqiang Chen

Abstract

Main path analysis is a famous network‐based method for understanding the evolution of a scientific domain. Most existing methods have two steps, weighting citation arcs based on search path counting and exploring main paths in a greedy fashion, with the assumption that citation networks are acyclic. The only available proposal that avoids manual cycle removal is to preprint transform a cyclic network to an acyclic counterpart. Through a detailed discussion about the issues concerning this approach, especially deriving the “de‐preprinted” main paths for the original network, this article proposes an alternative solution with two‐fold contributions. Based on the argument that a publication cannot influence itself through a citation cycle, the SimSPC algorithm is proposed to weight citation arcs by counting simple search paths. A set of algorithms are further proposed for main path exploration and extraction directly from cyclic networks based on a novel data structure main path tree. The experiments on two cyclic citation networks demonstrate the usefulness of the alternative solution. In the meanwhile, experiments show that publications in strongly connected components may sit on the turning points of main path networks, which signifies the necessity of a systematic way of dealing with citation cycles.

Suggested Citation

  • Xiaorui Jiang & Xinghao Zhu & Jingqiang Chen, 2020. "Main path analysis on cyclic citation networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(5), pages 578-595, May.
  • Handle: RePEc:bla:jinfst:v:71:y:2020:i:5:p:578-595
    DOI: 10.1002/asi.24258
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.24258
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.24258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Huei Kuan, 2023. "Does main path analysis prefer longer paths?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 841-851, January.
    2. Chi-Yo Huang & Liang-Chieh Wang & Ying-Ting Kuo & Wei-Ti Huang, 2021. "A Novel Analytic Framework of Technology Mining Using the Main Path Analysis and the Decision-Making Trial and Evaluation Laboratory-Based Analytic Network Process," Mathematics, MDPI, vol. 9(19), pages 1-24, October.
    3. Xiaorui Jiang & Junjun Liu, 2023. "Extracting the evolutionary backbone of scientific domains: The semantic main path network analysis approach based on citation context analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(5), pages 546-569, May.
    4. Yu, Dejian & Pan, Tianxing, 2021. "Tracing the main path of interdisciplinary research considering citation preference: A case from blockchain domain," Journal of Informetrics, Elsevier, vol. 15(2).
    5. Xiaorui Jiang & Jingqiang Chen, 2023. "Contextualised segment-wise citation function classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5117-5158, September.
    6. Wenjie Wei & Hongxu Liu & Zhuanlan Sun, 2022. "Cover papers of top journals are reliable source for emerging topics detection: a machine learning based prediction framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4315-4333, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:71:y:2020:i:5:p:578-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.