IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v71y2020i1p43-54.html
   My bibliography  Save this article

Early detection of heterogeneous disaster events using social media

Author

Listed:
  • Viktor Pekar
  • Jane Binner
  • Hossein Najafi
  • Chris Hale
  • Vincent Schmidt

Abstract

This article addresses the problem of detecting crisis‐related messages on social media, in order to improve the situational awareness of emergency services. Previous work focused on developing machine‐learning classifiers restricted to specific disasters, such as storms or wildfires. We investigate for the first time methods to detect such messages where the type of the crisis is not known in advance, that is, the data are highly heterogeneous. Data heterogeneity causes significant difficulties for learning algorithms to generalize and accurately label incoming data. Our main contributions are as follows. First, we evaluate the extent of this problem in the context of disaster management, finding that the performance of traditional learners drops by up to 40% when trained and tested on heterogeneous data vis‐á‐vis homogeneous data. Then, in order to overcome data heterogeneity, we propose a new ensemble learning method, and found this to perform on a par with the Gradient Boosting and AdaBoost ensemble learners. The methods are studied on a benchmark data set comprising 26 disaster events and four classification problems: detection of relevant messages, informative messages, eyewitness reports, and topical classification of messages. Finally, in a case study, we evaluate the proposed methods on a real‐world data set to assess its practical value.

Suggested Citation

  • Viktor Pekar & Jane Binner & Hossein Najafi & Chris Hale & Vincent Schmidt, 2020. "Early detection of heterogeneous disaster events using social media," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(1), pages 43-54, January.
  • Handle: RePEc:bla:jinfst:v:71:y:2020:i:1:p:43-54
    DOI: 10.1002/asi.24208
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.24208
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.24208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiyun Zhu & Kecheng Liu, 2021. "Capturing the Interplay between Risk Perception and Social Media Posting to Support Risk Response and Decision Making," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    2. Abhinav Kumar & Jyoti Prakash Singh & Nripendra P. Rana & Yogesh K. Dwivedi, 2023. "Multi-Channel Convolutional Neural Network for the Identification of Eyewitness Tweets of Disaster," Information Systems Frontiers, Springer, vol. 25(4), pages 1589-1604, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:71:y:2020:i:1:p:43-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.