IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v70y2019i7p675-684.html
   My bibliography  Save this article

Automatic detection of influencers in social networks: Authority versus domain signals

Author

Listed:
  • Javier Rodríguez‐Vidal
  • Julio Gonzalo
  • Laura Plaza
  • Henry Anaya Sánchez

Abstract

Given the task of finding influencers (opinion makers) for a given domain in a social network, we investigate (a) what is the relative importance of domain and authority signals, (b) what is the most effective way of combining signals (voting, classification, learning to rank, etc.) and how best to model the vocabulary signal, and (c) how large is the gap between supervised and unsupervised methods and what are the practical consequences. Our best results on the RepLab dataset (which improves the state of the art) uses language models to learn the domain‐specific vocabulary used by influencers and combines domain and authority models using a Learning to Rank algorithm. Our experiments show that (a) both authority and domain evidence can be trained from the vocabulary of influencers; (b) once the language of influencers is modeled as a likelihood signal, further supervised learning and additional network‐based signals only provide marginal improvements; and (c) the availability of training data sets is crucial to obtain competitive results in the task. Our most remarkable finding is that influencers do use a distinctive vocabulary, which is a more reliable signal than nontextual network indicators such as the number of followers, retweets, and so on.

Suggested Citation

  • Javier Rodríguez‐Vidal & Julio Gonzalo & Laura Plaza & Henry Anaya Sánchez, 2019. "Automatic detection of influencers in social networks: Authority versus domain signals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(7), pages 675-684, July.
  • Handle: RePEc:bla:jinfst:v:70:y:2019:i:7:p:675-684
    DOI: 10.1002/asi.24156
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.24156
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.24156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María José Aramburu & Rafael Berlanga & Indira Lanza, 2020. "Social Media Multidimensional Analysis for Intelligent Health Surveillance," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
    2. Javier Rodríguez‐Vidal & Jorge Carrillo‐de‐Albornoz & Julio Gonzalo & Laura Plaza, 2021. "Authority and priority signals in automatic summary generation for online reputation management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(5), pages 583-594, May.
    3. Yaxin Bi, 2022. "Sentiment classification in social media data by combining triplet belief functions," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 968-991, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:70:y:2019:i:7:p:675-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.