Author
Listed:
- Roberto González‐Ibáñez
- Aileen Esparza‐Villamán
- Juan Carlos Vargas‐Godoy
- Chirag Shah
Abstract
Implicit detection of relevance has been approached by many during the last decade. From the use of individual measures to the use of multiple features from different sources (multimodality), studies have shown the feasibility to automatically detect whether a document is relevant. Despite promising results, it is not clear yet to what extent multimodality constitutes an effective approach compared to unimodality. In this article, we hypothesize that it is possible to build unimodal models capable of outperforming multimodal models in the detection of perceived relevance. To test this hypothesis, we conducted three experiments to compare unimodal and multimodal classification models built using a combination of 24 features. Our classification experiments showed that a univariate unimodal model based on the left‐click feature supports our hypothesis. On the other hand, our prediction experiment suggests that multimodality slightly improves early classification compared to the best unimodal models. Based on our results, we argue that the feasibility for practical applications of state‐of‐the‐art multimodal approaches may be strongly constrained by technology, cultural, ethical, and legal aspects, in which case unimodality may offer a better alternative today for supporting relevance detection in interactive information retrieval systems.
Suggested Citation
Roberto González‐Ibáñez & Aileen Esparza‐Villamán & Juan Carlos Vargas‐Godoy & Chirag Shah, 2019.
"A comparison of unimodal and multimodal models for implicit detection of relevance in interactive IR,"
Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(11), pages 1223-1235, November.
Handle:
RePEc:bla:jinfst:v:70:y:2019:i:11:p:1223-1235
DOI: 10.1002/asi.24202
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:70:y:2019:i:11:p:1223-1235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.