IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v67y2016i5p1266-1275.html
   My bibliography  Save this article

Data, ideology, and the developing critical program of social informatics

Author

Listed:
  • Michael Marcinkowski

Abstract

The rapidly shifting ideological terrain of computing has a profound impact on Social Informatics's critical and empirical analysis of computerization movements. As these movements incorporate many of the past critiques concerning social fit and situational context leveled against them by Social Informatics research, more subtle and more deeply ingrained modes of ideological practice have risen to support movements of computerization. Among these, the current emphasis on the promises of data and data analytics presents the most obvious ideological challenge. In order to reorient Social Informatics in relation to these new ideological challenges, Louis Althusser's theory of ideology is discussed, with its implications for Social Informatics considered. Among these implications, a changed relationship between Social Informatics's critical stance and its reliance on empirical methods is advanced. Addressed at a fundamental level, the practice of Social Informatics comes to be reoriented in a more distinctly reflective and ethical direction.

Suggested Citation

  • Michael Marcinkowski, 2016. "Data, ideology, and the developing critical program of social informatics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1266-1275, May.
  • Handle: RePEc:bla:jinfst:v:67:y:2016:i:5:p:1266-1275
    DOI: 10.1002/asi.23483
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.23483
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.23483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Doug Howe & Maria Costanzo & Petra Fey & Takashi Gojobori & Linda Hannick & Winston Hide & David P. Hill & Renate Kania & Mary Schaeffer & Susan St Pierre & Simon Twigger & Owen White & Seung Yon Rhee, 2008. "The future of biocuration," Nature, Nature, vol. 455(7209), pages 47-50, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kertcher, Zack & Venkatraman, Rohan & Coslor, Erica, 2020. "Pleasingly parallel: Early cross-disciplinary work for innovation diffusion across boundaries in grid computing," Journal of Business Research, Elsevier, vol. 116(C), pages 581-594.
    2. Perrons, Robert K. & McAuley, Derek, 2015. "The case for “n«all”: Why the Big Data revolution will probably happen differently in the mining sector," Resources Policy, Elsevier, vol. 46(P2), pages 234-238.
    3. Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
    4. Vivek Kumar Singh & Sumit Kumar Banshal & Khushboo Singhal & Ashraf Uddin, 2015. "Scientometric mapping of research on ‘Big Data’," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 727-741, November.
    5. Hong-Jie Dai & Johnny Chi-Yang Wu & Richard Tzong-Han Tsai, 2013. "Collective Instance-Level Gene Normalization on the IGN Corpus," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-10, November.
    6. Sabrina de Azevedo Silveira & Raquel Cardoso de Melo-Minardi & Carlos Henrique da Silveira & Marcelo Matos Santoro & Wagner Meira Jr, 2014. "ENZYMAP: Exploiting Protein Annotation for Modeling and Predicting EC Number Changes in UniProt/Swiss-Prot," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    7. Renchu Guan & Chen Yang & Maurizio Marchese & Yanchun Liang & Xiaohu Shi, 2014. "Full Text Clustering and Relationship Network Analysis of Biomedical Publications," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    8. Gheorghe MILITARU & Massimo POLLIFRONI & Alexandra IOANID, 2015. "Big Data In Supply Chain Management: An Exploratory Study," Network Intelligence Studies, Romanian Foundation for Business Intelligence, Editorial Department, issue 6, pages 103-108, December.
    9. Harley, Diane & Acord, Sophia Krzys, 2011. "Peer Review in Academic Promotion and Publishing: Its Meaning, Locus, and Future," University of California at Berkeley, Center for Studies in Higher Education qt1xv148c8, Center for Studies in Higher Education, UC Berkeley.
    10. Řezník, T. & Lukas, V. & Charvát, K. & Horáková, Š. & Charvát junior, K., 2015. "Towards Farm-Oriented Open Data in Europe: the Scope and Pilots of the European Project "FOODIE"," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 7(1), pages 1-8, March.
    11. Liu Yinbin & Zhang Xiaoyue, 2021. "Research on the Overall Architecture and Application of E-Sports Big Data," International Journal of Business and Management, Canadian Center of Science and Education, vol. 15(12), pages 116-116, July.
    12. Stieglitz, Stefan & Mirbabaie, Milad & Ross, Björn & Neuberger, Christoph, 2018. "Social media analytics – Challenges in topic discovery, data collection, and data preparation," International Journal of Information Management, Elsevier, vol. 39(C), pages 156-168.
    13. Hayda Almeida & Marie-Jean Meurs & Leila Kosseim & Greg Butler & Adrian Tsang, 2014. "Machine Learning for Biomedical Literature Triage," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-21, December.
    14. Ekaansh Khosla & Ramesh Dharavath & Rashmi Priya, 2020. "Crop yield prediction using aggregated rainfall-based modular artificial neural networks and support vector regression," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5687-5708, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:67:y:2016:i:5:p:1266-1275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.