IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v67y2016i2p380-399.html
   My bibliography  Save this article

litewi: A combined term extraction and entity linking method for eliciting educational ontologies from textbooks

Author

Listed:
  • Angel Conde
  • Mikel Larrañaga
  • Ana Arruarte
  • Jon A. Elorriaga
  • Dan Roth

Abstract

type="main"> Major efforts have been conducted on ontology learning, that is, semiautomatic processes for the construction of domain ontologies from diverse sources of information. In the past few years, a research trend has focused on the construction of educational ontologies, that is, ontologies to be used for educational purposes. The identification of the terminology is crucial to build ontologies. Term extraction techniques allow the identification of the domain-related terms from electronic resources. This paper presents LiTeWi, a novel method that combines current unsupervised term extraction approaches for creating educational ontologies for technology supported learning systems from electronic textbooks. LiTeWi uses Wikipedia as an additional information source. Wikipedia contains more than 30 million articles covering the terminology of nearly every domain in 288 languages, which makes it an appropriate generic corpus for term extraction. Furthermore, given that its content is available in several languages, it promotes both domain and language independence. LiTeWi is aimed at being used by teachers, who usually develop their didactic material from textbooks. To evaluate its performance, LiTeWi was tuned up using a textbook on object oriented programming and then tested with two textbooks of different domains—astronomy and molecular biology.

Suggested Citation

  • Angel Conde & Mikel Larrañaga & Ana Arruarte & Jon A. Elorriaga & Dan Roth, 2016. "litewi: A combined term extraction and entity linking method for eliciting educational ontologies from textbooks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(2), pages 380-399, February.
  • Handle: RePEc:bla:jinfst:v:67:y:2016:i:2:p:380-399
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/asi.23398
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jong Hwan Suh, 2019. "SocialTERM-Extractor: Identifying and Predicting Social-Problem-Specific Key Noun Terms from a Large Number of Online News Articles Using Text Mining and Machine Learning Techniques," Sustainability, MDPI, vol. 11(1), pages 1-44, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:67:y:2016:i:2:p:380-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.