IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v67y2016i2p305-317.html
   My bibliography  Save this article

User modeling in a social network for cognitively disabled people

Author

Listed:
  • Olatz Arbelaitz
  • José María Martínez-Otzeta
  • Javier Muguerza

Abstract

type="main"> Online communities are becoming an important tool in the communication and participation processes in our society. However, the most widespread applications are difficult to use for people with disabilities, or may involve some risks if no previous training has been undertaken. This work describes a novel social network for cognitively disabled people along with a clustering-based method for modeling activity and socialization processes of its users in a noninvasive way. This closed social network is specifically designed for people with cognitive disabilities, called Guremintza, that provides the network administrators (e.g., social workers) with two types of reports: summary statistics of the network usage and behavior patterns discovered by a data mining process. Experiments made in an initial stage of the network show that the discovered patterns are meaningful to the social workers and they find them useful in monitoring the progress of the users.

Suggested Citation

  • Olatz Arbelaitz & José María Martínez-Otzeta & Javier Muguerza, 2016. "User modeling in a social network for cognitively disabled people," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(2), pages 305-317, February.
  • Handle: RePEc:bla:jinfst:v:67:y:2016:i:2:p:305-317
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/asi.23381
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ransome Epie Bawack & Emilie Bonhoure, 2023. "Influencer is the New Recommender: insights for Theorising Social Recommender Systems," Information Systems Frontiers, Springer, vol. 25(1), pages 183-197, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:67:y:2016:i:2:p:305-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.