Author
Abstract
This paper will show that short horizon stock returns for UK portfolios are more predictable than suggested by sample autocorrelation co‐efficients. Four capitalisation based portfolios are constructed for the period 1976–1991. It is shown that the first order autocorrelation coefficient of monthly returns can explain no more than 10% of the variation in monthly portfolio returns. Monthly autocorrelation coefficients assume that each weekly return of the previous month contains the same amount of information. However, this will not be the case if short horizon returns contain predictable components which dissipate rapidly. In this case, the return of the most recent week would say a lot more about the future monthly portfolio return than other weeks. This suggests that when predicting future monthly portfolio returns more weight should be given to the most recent weeks of the previous month, because, the most recent weekly returns provide the most information about the subsequent months' performance. We construct a model which exploits the mean reverting characteristics of monthly portfolio returns. Using this model we forecast future monthly portfolio returns. When compared to forecasts that utilise the autocorrelation statistic the model which exploits the mean reverting characteristics of monthlyportfolio returns can forecast future returns better than the autocorrelation statistic, both in and out of sample.
Suggested Citation
Patricia Chelley‐Steeley, 2001.
"Mean Reversion in the Short Horizon Returns of UK Portfolios,"
Journal of Business Finance & Accounting, Wiley Blackwell, vol. 28(1‐2), pages 107-126, January.
Handle:
RePEc:bla:jbfnac:v:28:y:2001:i:1-2:p:107-126
DOI: 10.1111/1468-5957.00367
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jbfnac:v:28:y:2001:i:1-2:p:107-126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0306-686X .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.