IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v64y2013i2p321-333.html
   My bibliography  Save this article

Topical community detection from mining user tagging behavior and interest

Author

Listed:
  • Xiaoling Sun
  • Hongfei Lin

Abstract

With the development of Web2.0, social tagging systems in which users can freely choose tags to annotate resources according to their interests have attracted much attention. In particular, literature on the emergence of collective intelligence in social tagging systems has increased. In this article, we propose a probabilistic generative model to detect latent topical communities among users. Social tags and resource contents are leveraged to model user interest in two similar and correlated ways. Our primary goal is to capture user tagging behavior and interest and discover the emergent topical community structure. The communities should be groups of users with frequent social interactions as well as similar topical interests, which would have important research implications for personalized information services. Experimental results on two real social tagging data sets with different genres have shown that the proposed generative model more accurately models user interest and detects high‐quality and meaningful topical communities.

Suggested Citation

  • Xiaoling Sun & Hongfei Lin, 2013. "Topical community detection from mining user tagging behavior and interest," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(2), pages 321-333, February.
  • Handle: RePEc:bla:jamist:v:64:y:2013:i:2:p:321-333
    DOI: 10.1002/asi.22740
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.22740
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.22740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunhong Xu & Dehu Yin & Duanning Zhou, 2019. "Investigating Users’ Tagging Behavior in Online Academic Community Based on Growth Model: Difference between Active and Inactive Users," Information Systems Frontiers, Springer, vol. 21(4), pages 761-772, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:64:y:2013:i:2:p:321-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.