IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v64y2013i1p190-212.html
   My bibliography  Save this article

Modeling geographic, temporal, and proximity contexts for improving geotemporal search

Author

Listed:
  • Mariam Daoud
  • Jimmy Xiangji Huang

Abstract

Traditional information retrieval (IR) systems show significant limitations on returning relevant documents that satisfy the user's information needs. In particular, to answer geographic and temporal user queries, the IR task becomes a nonstraightforward process where the available geographic and temporal information is often unstructured. In this article, we propose a geotemporal search approach that consists of modeling and exploiting geographic and temporal query context evidence that refers to implicit multivarying geographic and temporal intents behind the query. Modeling geographic and temporal query contexts is based on extracting and ranking geographic and temporal keywords found in pseudo‐relevant feedback (PRF) documents for a given query. Our geotemporal search approach is based on exploiting the geographic and temporal query contexts separately into a probabilistic ranking model and jointly into a proximity ranking model. Our hypothesis is based on the concept that geographic and temporal expressions tend to co‐occur within the document where the closer they are in the document, the more relevant the document is. Finally, geographic, temporal, and proximity scores are combined according to a linear combination formula. An extensive experimental evaluation conducted on a portion of the New York Times news collection and the TREC 2004 robust retrieval track collection shows that our geotemporal approach outperforms significantly a well‐known baseline search and the best known geotemporal search approaches in the domain. Finally, an in‐depth analysis shows a positive correlation between the geographic and temporal query sensitivity and the retrieval performance. Also, we find that geotemporal distance has a positive impact on retrieval performance generally.

Suggested Citation

  • Mariam Daoud & Jimmy Xiangji Huang, 2013. "Modeling geographic, temporal, and proximity contexts for improving geotemporal search," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(1), pages 190-212, January.
  • Handle: RePEc:bla:jamist:v:64:y:2013:i:1:p:190-212
    DOI: 10.1002/asi.22648
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.22648
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.22648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:64:y:2013:i:1:p:190-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.