IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v63y2012i3p512-527.html
   My bibliography  Save this article

Effective query generation and postprocessing strategies for prior art patent search

Author

Listed:
  • Suleyman Cetintas
  • Luo Si

Abstract

Rapid increase in global competition demands increased protection of intellectual property rights and underlines the importance of patents as major intellectual property documents. Prior art patent search is the task of identifying related patents for a given patent file, and is an essential step in judging the validity of a patent application. This article proposes an automated query generation and postprocessing method for prior art patent search. The proposed approach first constructs structured queries by combining terms extracted from different fields of a query patent and then reranks the retrieved patents by utilizing the International Patent Classification (IPC) code similarities between the query patent and the retrieved patents along with the retrieval score. An extensive set of empirical results carried out on a large‐scale, real‐world dataset shows that utilizing 20 or 30 query terms extracted from all fields of an original query patent according to their log(tf)idf values helps form a representative search query out of the query patent and is found to be more effective than is using any number of query terms from any single field. It is shown that combining terms extracted from different fields of the query patent by giving higher importance to terms extracted from the abstract, claims, and description fields than to terms extracted from the title field is more effective than treating all extracted terms equally while forming the search query. Finally, utilizing the similarities between the IPC codes of the query patent and retrieved patents is shown to be beneficial to improve the effectiveness of the prior art search.

Suggested Citation

  • Suleyman Cetintas & Luo Si, 2012. "Effective query generation and postprocessing strategies for prior art patent search," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 512-527, March.
  • Handle: RePEc:bla:jamist:v:63:y:2012:i:3:p:512-527
    DOI: 10.1002/asi.21708
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.21708
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.21708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:63:y:2012:i:3:p:512-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.