Author
Listed:
- Gavin Smith
- Chris Brien
- Helen Ashman
Abstract
The interactions of users with search engines can be seen as implicit relevance feedback by the user on the results offered to them. In particular, the selection of results by users can be interpreted as a confirmation of the relevance of those results, and used to reorder or prioritize subsequent search results. This collection of search/result pairings is called clickthrough data, and many uses for it have been proposed. However, the reliability of clickthrough data has been challenged and it has been suggested that clickthrough data are not a completely accurate measure of relevance between search term and results. This paper reports on an experiment evaluating the reliability of clickthrough data as a measure of the mutual relevance of search term and result. The experiment comprised a user study involving over 67 participants and determines the reliability of image search clickthrough data, using factors identified in previous similar studies. A major difference in this work to previous work is that the source of clickthrough data comes from image searches, rather than the traditional text page searches. Image search clickthrough data were rarely examined in prior works but has differences that impact the accuracy of clickthrough data. These differences include a more complete representation of the results in image search, allowing users to scrutinize the results more closely before selecting them, as well as presenting the results in a less obviously ordered way. The experiment reported here demonstrates that image clickthrough data can be more reliable as a relevance feedback measure than has been the case with traditional text‐based search. There is also evidence that the precision of the search system influences the accuracy of click data when users make searches in an information‐seeking capacity.
Suggested Citation
Gavin Smith & Chris Brien & Helen Ashman, 2012.
"Evaluating implicit judgments from image search clickthrough data,"
Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2451-2462, December.
Handle:
RePEc:bla:jamist:v:63:y:2012:i:12:p:2451-2462
DOI: 10.1002/asi.22742
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:63:y:2012:i:12:p:2451-2462. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.