Author
Listed:
- Kazuhiro Seki
- Kuniaki Uehara
Abstract
This article proposes a novel application of a statistical language model to opinionated document retrieval targeting weblogs (blogs). In particular, we explore the use of the trigger model—originally developed for incorporating distant word dependencies—in order to model the characteristics of personal opinions that cannot be properly modeled by standard n‐grams. Our primary assumption is that there are two constituents to form a subjective opinion. One is the subject of the opinion or the object that the opinion is about, and the other is a subjective expression; the former is regarded as a triggering word and the latter as a triggered word. We automatically identify those subjective trigger patterns to build a language model from a corpus of product customer reviews. Experimental results on the Text Retrieval Conference Blog track test collections show that, when used for reranking initial search results, our proposed model significantly improves opinionated document retrieval. In addition, we report on an experiment on dynamic adaptation of the model to a given query, which is found effective for most of the difficult queries categorized under politics and organizations. We also demonstrate that, without any modification to the proposed model itself, it can be effectively applied to polarized opinion retrieval.
Suggested Citation
Kazuhiro Seki & Kuniaki Uehara, 2011.
"Opinionated document retrieval using subjective triggers,"
Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(5), pages 861-876, May.
Handle:
RePEc:bla:jamist:v:62:y:2011:i:5:p:861-876
DOI: 10.1002/asi.21502
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:62:y:2011:i:5:p:861-876. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.