Author
Abstract
In this paper, we present a theoretical analysis and extensive experiments on the automated assignment of Dewey Decimal Classification (DDC) classes to bibliographic data with a supervised machine‐learning approach. Library classification systems, such as the DDC, impose great obstacles on state‐of‐art text categorization (TC) technologies, including deep hierarchy, data sparseness, and skewed distribution. We first analyze statistically the document and category distributions over the DDC, and discuss the obstacles imposed by bibliographic corpora and library classification schemes on TC technology. To overcome these obstacles, we propose an innovative algorithm to reshape the DDC structure into a balanced virtual tree by balancing the category distribution and flattening the hierarchy. To improve the classification effectiveness to a level acceptable to real‐world applications, we propose an interactive classification model that is able to predict a class of any depth within a limited number of user interactions. The experiments are conducted on a large bibliographic collection created by the Library of Congress within the science and technology domains over 10 years. With no more than three interactions, a classification accuracy of nearly 90% is achieved, thus providing a practical solution to the automatic bibliographic classification problem.
Suggested Citation
Jun Wang, 2009.
"An extensive study on automated Dewey Decimal Classification,"
Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2269-2286, November.
Handle:
RePEc:bla:jamist:v:60:y:2009:i:11:p:2269-2286
DOI: 10.1002/asi.21147
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:60:y:2009:i:11:p:2269-2286. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.