IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v58y2007i11p1586-1595.html
   My bibliography  Save this article

Matrix comparison, Part 1: Motivation and important issues for measuring the resemblance between proximity measures or ordination results

Author

Listed:
  • Jesper W. Schneider
  • Pia Borlund

Abstract

The present two‐part article introduces matrix com‐parison as a formal means of evaluation in informetric studies such as cocitation analysis. In this first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such comparisons, are introduced and discussed. The motivation is spurred by the recent debate on choice of proximity measures and their potential influence upon clustering and ordination results. The two important issues discussed here are matrix generation and the composition of proximity measures. The approach to matrix generation is demonstrated for the same data set, i.e., how data is represented and transformed in a matrix, evidently determines the behavior of proximity measures. Two different matrix generation approaches, in all probability, will lead to different proximity rankings of objects, which further lead to different ordination and clustering results for the same set of objects. Further, a resemblance in the composition of formulas indicates whether two proximity measures may produce similar ordination and clustering results. However, as shown in the case of the angular correlation and cosine measures, a small deviation in otherwise similar formulas can lead to different rankings depending on the contour of the data matrix transformed. Eventually, the behavior of proximity measures, that is whether they produce similar rankings of objects, is more or less data‐specific. Consequently, the authors recommend the use of empirical matrix comparison techniques for individual studies to investigate the degree of resemblance between proximity measures or their ordination results. In part two of the article, the authors introduce and demonstrate two related statistical matrix comparison techniques the Mantel test and Procrustes analysis, respectively. These techniques can compare and evaluate the degree of monotonicity between different proximity measures or their ordination results. As such, the Mantel test and Procrustes analysis can be used as statistical validation tools in informetric studies and thus help choosing suitable proximity measures.

Suggested Citation

  • Jesper W. Schneider & Pia Borlund, 2007. "Matrix comparison, Part 1: Motivation and important issues for measuring the resemblance between proximity measures or ordination results," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(11), pages 1586-1595, September.
  • Handle: RePEc:bla:jamist:v:58:y:2007:i:11:p:1586-1595
    DOI: 10.1002/asi.20643
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.20643
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.20643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si Hyung Joo & Yeonbae Kim, 2010. "Measuring relatedness between technological fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 435-454, May.
    2. Law, Kris M.Y. & Breznik, Kristijan, 2018. "What do airline mission statements reveal about value and strategy?," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 36-44.
    3. van Eck, N.J.P. & Waltman, L., 2007. "Appropriate Similarity Measures for Author Cocitation Analysis," ERIM Report Series Research in Management ERS-2007-091-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Copiello, Sergio, 2019. "Peer and neighborhood effects: Citation analysis using a spatial autoregressive model and pseudo-spatial data," Journal of Informetrics, Elsevier, vol. 13(1), pages 238-254.
    5. Ilaria Lucrezia Amerise & Agostino Tarsitano, 2012. "Weighting Distance Matrices Using Rank Correlations," Working Papers 201209, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    6. Wildgaard, Lorna, 2016. "A critical cluster analysis of 44 indicators of author-level performance," Journal of Informetrics, Elsevier, vol. 10(4), pages 1055-1078.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:58:y:2007:i:11:p:1586-1595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.