IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v57y2006i8p1005-1010.html
   My bibliography  Save this article

Machine learning for Arabic text categorization

Author

Listed:
  • Rehab M. Duwairi

Abstract

In this article we propose a distance‐based classifier for categorizing Arabic text. Each category is represented as a vector of words in an m‐dimensional space, and documents are classified on the basis of their closeness to feature vectors of categories. The classifier, in its learning phase, scans the set of training documents to extract features of categories that capture inherent category‐specific properties; in its testing phase the classifier uses previously determined category‐specific features to categorize unclassified documents. Stemming was used to reduce the dimensionality of feature vectors of documents. The accuracy of the classifier was tested by carrying out several categorization tasks on an in‐house collected Arabic corpus. The results show that the proposed classifier is very accurate and robust.

Suggested Citation

  • Rehab M. Duwairi, 2006. "Machine learning for Arabic text categorization," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(8), pages 1005-1010, June.
  • Handle: RePEc:bla:jamist:v:57:y:2006:i:8:p:1005-1010
    DOI: 10.1002/asi.20360
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.20360
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.20360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khreisat, Laila, 2009. "A machine learning approach for Arabic text classification using N-gram frequency statistics," Journal of Informetrics, Elsevier, vol. 3(1), pages 72-77.
    2. Emad Al‐Shawakfa & Amer Al‐Badarneh & Safwan Shatnawi & Khaleel Al‐Rabab'ah & Basel Bani‐Ismail, 2010. "A comparison study of some Arabic root finding algorithms," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(5), pages 1015-1024, May.
    3. Mohammed Rushdi‐Saleh & M. Teresa Martín‐Valdivia & L. Alfonso Ureña‐López & José M. Perea‐Ortega, 2011. "OCA: Opinion corpus for Arabic," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 2045-2054, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:57:y:2006:i:8:p:1005-1010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.