IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v54y2003i7p611-620.html
   My bibliography  Save this article

Adapting measures of clumping strength to assess term‐term similarity

Author

Listed:
  • Abraham Bookstein
  • Vladimir Kulyukin
  • Timo Raita
  • John Nicholson

Abstract

Automated information retrieval relies heavily on statistical regularities that emerge as terms are deposited to produce text. This paper examines statistical patterns expected of a pair of terms that are semantically related to each other. Guided by a conceptualization of the text generation process, we derive measures of how tightly two terms are semantically associated. Our main objective is to probe whether such measures yield reasonable results. Specifically, we examine how the tendency of a content bearing term to clump, as quantified by previously developed measures of term clumping, is influenced by the presence of other terms. This approach allows us to present a toolkit from which a range of measures can be constructed. As an illustration, one of several suggested measures is evaluated on a large text corpus built from an on‐line encyclopedia.

Suggested Citation

  • Abraham Bookstein & Vladimir Kulyukin & Timo Raita & John Nicholson, 2003. "Adapting measures of clumping strength to assess term‐term similarity," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(7), pages 611-620, May.
  • Handle: RePEc:bla:jamist:v:54:y:2003:i:7:p:611-620
    DOI: 10.1002/asi.10249
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.10249
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.10249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
    2. Zhang, Yi & Porter, Alan L. & Hu, Zhengyin & Guo, Ying & Newman, Nils C., 2014. "“Term clumping” for technical intelligence: A case study on dye-sensitized solar cells," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 26-39.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:54:y:2003:i:7:p:611-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.