IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v53y2002i8p617-630.html
   My bibliography  Save this article

Subject categorization of query terms for exploring Web users' search interests

Author

Listed:
  • Hsiao‐Tieh Pu
  • Shui‐Lung Chuang
  • Chyan Yang

Abstract

Subject content analysis of Web query terms is essential to understand Web searching interests. Such analysis includes exploring search topics and observing changes in their frequency distributions with time. To provide a basis for in‐depth analysis of users' search interests on a larger scale, this article presents a query categorization approach to automatically classifying Web query terms into broad subject categories. Because a query is short in length and simple in structure, its intended subject(s) of search is difficult to judge. Our approach, therefore, combines the search processes of real‐world search engines to obtain highly ranked Web documents based on each unknown query term. These documents are used to extract cooccurring terms and to create a feature set. An effective ranking function has also been developed to find the most appropriate categories. Three search engine logs in Taiwan were collected and tested. They contained over 5 million queries from different periods of time. The achieved performance is quite encouraging compared with that of human categorization. The experimental results demonstrate that the approach is efficient in dealing with large numbers of queries and adaptable to the dynamic Web environment. Through good integration of human and machine efforts, the frequency distributions of subject categories in response to changes in users' search interests can be systematically observed in real time. The approach has also shown potential for use in various information retrieval applications, and provides a basis for further Web searching studies.

Suggested Citation

  • Hsiao‐Tieh Pu & Shui‐Lung Chuang & Chyan Yang, 2002. "Subject categorization of query terms for exploring Web users' search interests," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 53(8), pages 617-630.
  • Handle: RePEc:bla:jamist:v:53:y:2002:i:8:p:617-630
    DOI: 10.1002/asi.10071
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.10071
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.10071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jina Suh & Eric Horvitz & Ryen W. White & Tim Althoff, 2022. "Disparate impacts on online information access during the Covid-19 pandemic," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Huseyin C. Ozmutlu, 2009. "Markovian analysis for automatic new topic identification in search engine transaction logs," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 737-768, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:53:y:2002:i:8:p:617-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.