IDEAS home Printed from https://ideas.repec.org/a/bla/jamist/v52y2001i10p813-827.html
   My bibliography  Save this article

Predicting the relevance of a library catalog search

Author

Listed:
  • Michael D. Cooper
  • Hui‐Min Chen

Abstract

Relevance has been a difficult concept to define, let alone measure. In this paper, a simple operational definition of relevance is proposed for a Web‐based library catalog: whether or not during a search session the user saves, prints, mails, or downloads a citation. If one of those actions is performed, the session is considered relevant to the user. An analysis is presented illustrating the advantages and disadvantages of this definition. With this definition and good transaction logging, it is possible to ascertain the relevance of a session. This was done for 905,970 sessions conducted with the University of California's Melvyl online catalog. Next, a methodology was developed to try to predict the relevance of a session. A number of variables were defined that characterize a session, none of which used any demographic information about the user. The values of the variables were computed for the sessions. Principal components analysis was used to extract a new set of variables out of the original set. A stratified random sampling technique was used to form ten strata such that each new strata of 90,570 sessions contained the same proportion of relevant to nonrelevant sessions. Logistic regression was used to ascertain the regression coefficients for nine of the ten strata. Then, the coefficients were used to predict the relevance of the sessions in the missing strata. Overall, 17.85% of the sessions were determined to be relevant. The predicted number of relevant sessions for all ten strata was 11%, a 6.85% difference. The authors believe that the methodology can be further refined and the prediction improved. This methodology could also have significant application in improving user searching and also in predicting electronic commerce buying decisions without the use of personal demographic data.

Suggested Citation

  • Michael D. Cooper & Hui‐Min Chen, 2001. "Predicting the relevance of a library catalog search," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 52(10), pages 813-827.
  • Handle: RePEc:bla:jamist:v:52:y:2001:i:10:p:813-827
    DOI: 10.1002/asi.1140
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.1140
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.1140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gineke Wiggers & Suzan Verberne & Wouter van Loon & Gerrit‐Jan Zwenne, 2023. "Bibliometric‐enhanced legal information retrieval: Combining usage and citations as flavors of impact relevance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(8), pages 1010-1025, August.
    2. Zdziebko Tomasz, 2012. "E-Commerce Customers’ Preference Implicit Identification," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 33-46, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamist:v:52:y:2001:i:10:p:813-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.