IDEAS home Printed from https://ideas.repec.org/a/bla/jamest/v49y1998i8p693-705.html
   My bibliography  Save this article

A machine learning approach to inductive query by examples: An experiment using relevance feedback, ID3, genetic algorithms, and simulated annealing

Author

Listed:
  • Hsinchun Chen
  • Ganesan Shankaranarayanan
  • Linlin She
  • Anand Iyer

Abstract

Information retrieval using probabilistic techniques has attracted significant attention on the part of researchers in information and computer science over the past few decades. In the 1980s, knowledge‐based techniques also made an impressive contribution to “intelligent” information retrieval and indexing. More recently, information science researchers have turned to other newer inductive learning techniques including symbolic learning, genetic algorithms, and simulated annealing. These newer techniques, which are grounded in diverse paradigms, have provided great opportunities for researchers to enhance the information processing and retrieval capabilities of current information systems. In this article, we first provide an overview of these newer techniques and their use in information retrieval research. In order to familiarize readers with the techniques, we present three promising methods: The symbolic ID3 algorithm, evolution‐based genetic algorithms, and simulated annealing. We discuss their knowledge representations and algorithms in the unique context of information retrieval. An experiment using a 8000‐record COMPEN database was performed to examine the performances of these inductive query‐by‐example techniques in comparison with the performance of the conventional relevance feedback method. The machine learning techniques were shown to be able to help identify new documents which are similar to documents initially suggested by users, and documents which contain similar concepts to each other. Genetic algorithms, in particular, were found to out‐perform relevance feedback in both document recall and precision. We believe these inductive machine learning techniques hold promise for the ability to analyze users' preferred documents (or records), identify users' underlying information needs, and also suggest alternatives for search for database management systems and Internet applications. © 1998 John Wiley & Sons, Inc.

Suggested Citation

  • Hsinchun Chen & Ganesan Shankaranarayanan & Linlin She & Anand Iyer, 1998. "A machine learning approach to inductive query by examples: An experiment using relevance feedback, ID3, genetic algorithms, and simulated annealing," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(8), pages 693-705.
  • Handle: RePEc:bla:jamest:v:49:y:1998:i:8:p:693-705
    DOI: 10.1002/(SICI)1097-4571(199806)49:83.0.CO;2-O
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1097-4571(199806)49:83.0.CO;2-O
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1097-4571(199806)49:83.0.CO;2-O?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songul Cinaroglu, 2020. "Modelling unbalanced catastrophic health expenditure data by using machine‐learning methods," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 168-181, October.
    2. Chunneng Huang & Tianjun Fu & Hsinchun Chen, 2010. "Text‐based video content classification for online video‐sharing sites," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(5), pages 891-906, May.
    3. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    4. Onur Şeref & Talayeh Razzaghi & Petros Xanthopoulos, 2017. "Weighted relaxed support vector machines," Annals of Operations Research, Springer, vol. 249(1), pages 235-271, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jamest:v:49:y:1998:i:8:p:693-705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.