IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v89y2021i1p207-209.html
   My bibliography  Save this article

Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences

Author

Listed:
  • Debashis Ghosh

Abstract

No abstract is available for this item.

Suggested Citation

  • Debashis Ghosh, 2021. "Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences," International Statistical Review, International Statistical Institute, vol. 89(1), pages 207-209, April.
  • Handle: RePEc:bla:istatr:v:89:y:2021:i:1:p:207-209
    DOI: 10.1111/insr.12439
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12439
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samantha M. Roth & Ben Seiyon Lee & Sanjib Sharma & Iman Hosseini‐Shakib & Klaus Keller & Murali Haran, 2023. "Flood hazard model calibration using multiresolution model output," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    2. Vahid Tadayon & Mohammad Mehdi Saber, 2023. "A Spatial Logistic Regression Model Based on a Valid Skew-Gaussian Latent Field," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 59-73, March.
    3. Huang Huang & Stefano Castruccio & Allison H. Baker & Marc G. Genton, 2023. "Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 324-344, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:89:y:2021:i:1:p:207-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.