IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v87y2019is1ps64-s78.html
   My bibliography  Save this article

Analysis of Categorical Data for Complex Surveys

Author

Listed:
  • Chris Skinner

Abstract

This paper reviews methods for handling complex sampling schemes when analysing categorical survey data. It is generally assumed that the complex sampling scheme does not affect the specification of the parameters of interest, only the methodology for making inference about these parameters. The organisation of the paper is loosely chronological. Contingency table data are emphasised first before moving on to the analysis of unit‐level data. Weighted least squares methods, introduced in the mid 1970s along with methods for two‐way tables, receive early attention. They are followed by more general methods based on maximum likelihood, particularly pseudo maximum likelihood estimation. Point estimation methods typically involve the use of survey weights in some way. Variance estimation methods are described in broad terms. There is a particular emphasis on methods of testing. The main modelling methods considered are log‐linear models, logit models, generalised linear models and latent variable models. There is no coverage of multilevel models.

Suggested Citation

  • Chris Skinner, 2019. "Analysis of Categorical Data for Complex Surveys," International Statistical Review, International Statistical Institute, vol. 87(S1), pages 64-78, May.
  • Handle: RePEc:bla:istatr:v:87:y:2019:i:s1:p:s64-s78
    DOI: 10.1111/insr.12285
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12285
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brajendra C. Sutradhar, 2022. "Multinomial Logistic Mixed Models for Clustered Categorical Data in a Complex Survey Sampling Setup," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 743-789, August.
    2. Brajendra C. Sutradhar, 2023. "Cluster Correlations and Complexity in Binary Regression Analysis Using Two-stage Cluster Samples," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 829-884, February.
    3. Hyunju Dan & Jiyoung Kim & Oksoo Kim, 2020. "Effects of Gender and Age on Dietary Intake and Body Mass Index in Hypertensive Patients: Analysis of the Korea National Health and Nutrition Examination," IJERPH, MDPI, vol. 17(12), pages 1-9, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:87:y:2019:i:s1:p:s64-s78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.