IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v87y2019i2p263-284.html
   My bibliography  Save this article

Projection‐Based Inference in Randomised Clinical Trials

Author

Listed:
  • Biao Zhang

Abstract

Covariate information is often available in randomised clinical trials for each subject prior to treatment assignment and is commonly utilised to make covariate adjustment for baseline characteristics predictive of the outcome in order to increase precision and improve power in the detection of a treatment effect. Motivated by a nonparametric covariance analysis, we study a projection approach to making objective covariate adjustment in randomised clinical trials on the basis of two unbiased estimating functions that decouple the outcome and covariate data. The proposed projection approach extends a weighted least‐squares procedure by projecting one of the estimating functions onto the linear subspace spanned by the other estimating function that is E‐ancillary for the average treatment effect. Compared with the weighted least‐squares method, the projection method allows for objective inference on the average treatment effect by exploiting the treatment specific covariate–outcome associations. The resulting projection‐based estimator of the average treatment effect is asymptotically efficient when the treatment‐specific working regression models are correctly specified and is asymptotically more efficient than other existing competitors when the treatment‐specific working regression models are misspecified. The proposed projection method is illustrated by an analysis of data from an HIV clinical trial. In a simulation study, we show that the proposed projection method compares favourably with its competitors in finite samples.

Suggested Citation

  • Biao Zhang, 2019. "Projection‐Based Inference in Randomised Clinical Trials," International Statistical Review, International Statistical Institute, vol. 87(2), pages 263-284, August.
  • Handle: RePEc:bla:istatr:v:87:y:2019:i:2:p:263-284
    DOI: 10.1111/insr.12304
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12304
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:87:y:2019:i:2:p:263-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.