IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v87y2019i2p207-236.html
   My bibliography  Save this article

Cumulative and CUB Models for Rating Data: A Comparative Analysis

Author

Listed:
  • Domenico Piccolo
  • Rosaria Simone
  • Maria Iannario

Abstract

Ordinal measurements as ratings, preference and evaluation data are very common in applied disciplines, and their analysis requires a proper modelling approach for interpretation, classification and prediction of response patterns. This work proposes a comparative discussion between two statistical frameworks that serve these goals: the established class of cumulative models and a class of mixtures of discrete random variables, denoted as CUB models, whose peculiar feature is the specification of an uncertainty component to deal with indecision and heterogeneity. After surveying their definition and main features, we compare the performances of the selected paradigms by means of simulation experiments and selected case studies. The paper is tailored to enrich the understanding of the two approaches by running an extensive and comparative analysis of results, relative advantages and limitations, also at graphical level. In conclusion, a summarising review of the key issues of the alternative strategies and some final remarks are given, aimed to support a unifying setting.

Suggested Citation

  • Domenico Piccolo & Rosaria Simone & Maria Iannario, 2019. "Cumulative and CUB Models for Rating Data: A Comparative Analysis," International Statistical Review, International Statistical Institute, vol. 87(2), pages 207-236, August.
  • Handle: RePEc:bla:istatr:v:87:y:2019:i:2:p:207-236
    DOI: 10.1111/insr.12282
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12282
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ribecco, Nunziata & D'Uggento, Angela Maria & Labarile, Angela, 2022. "What influences the perception of immigration in Italian adolescents? An analysis with CUB models for rating data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Rosaria Simone, 2021. "An accelerated EM algorithm for mixture models with uncertainty for rating data," Computational Statistics, Springer, vol. 36(1), pages 691-714, March.
    3. Francesca Iorio & Riccardo Lucchetti & Rosaria Simone, 2024. "Testing distributional assumptions in CUB models for the analysis of rating data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 669-701, September.
    4. Antonio Calcagnì & Luigi Lombardi, 2022. "Modeling random and non-random decision uncertainty in ratings data: a fuzzy beta model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 145-173, March.
    5. Capecchi, Stefania & Amato, Mario & Sodano, Valeria & Verneau, Fabio, 2019. "Understanding beliefs and concerns towards palm oil: Empirical evidence and policy implications," Food Policy, Elsevier, vol. 89(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:87:y:2019:i:2:p:207-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.