IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v86y2018i2p219-236.html
   My bibliography  Save this article

Estimating Precision and Recall for Deterministic and Probabilistic Record Linkage

Author

Listed:
  • James Chipperfield
  • Noel Hansen
  • Peter Rossiter

Abstract

Linking administrative, survey and census files to enhance dimensions such as time and breadth or depth of detail is now common. Because a unique person identifier is often not available, records belonging to two different units (e.g. people) may be incorrectly linked. Estimating the proportion of links that are correct, called Precision, is difficult because, even after clerical review, there will remain uncertainty about whether a link is in fact correct or incorrect. Measures of Precision are useful when deciding whether or not it is worthwhile linking two files, when comparing alternative linking strategies and as a quality measure for estimates based on the linked file. This paper proposes an estimator of Precision for a linked file that has been created by either deterministic (or rules‐based) or probabilistic (where evidence for a link being a match is weighted against the evidence that it is not a match) linkage, both of which are widely used in practice. This paper shows that the proposed estimators perform well.

Suggested Citation

  • James Chipperfield & Noel Hansen & Peter Rossiter, 2018. "Estimating Precision and Recall for Deterministic and Probabilistic Record Linkage," International Statistical Review, International Statistical Institute, vol. 86(2), pages 219-236, August.
  • Handle: RePEc:bla:istatr:v:86:y:2018:i:2:p:219-236
    DOI: 10.1111/insr.12246
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12246
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Chipperfield, 2022. "Survey Weighting after Imperfect Linkage to an Administrative File," International Statistical Review, International Statistical Institute, vol. 90(3), pages 419-436, December.
    2. Angelo Moretti & Natalie Shlomo, 2023. "Improving Probabilistic Record Linkage Using Statistical Prediction Models," International Statistical Review, International Statistical Institute, vol. 91(3), pages 368-394, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:86:y:2018:i:2:p:219-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.