IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v86y2018i1p51-67.html
   My bibliography  Save this article

Estimation Techniques for Ordinal Data in Multiple Frame Surveys with Complex Sampling Designs

Author

Listed:
  • Maria del Mar Rueda
  • Antonio Arcos
  • David Molina
  • Maria Giovanna Ranalli

Abstract

Surveys usually include questions where individuals must select one in a series of possible options that can be sorted. On the other hand, multiple frame surveys are becoming a widely used method to decrease bias due to undercoverage of the target population. In this work, we propose statistical techniques for handling ordinal data coming from a multiple frame survey using complex sampling designs and auxiliary information. Our aim is to estimate proportions when the variable of interest has ordinal outcomes. Two estimators are constructed following model†assisted generalised regression and model calibration techniques. Theoretical properties are investigated for these estimators. Simulation studies with different sampling procedures are considered to evaluate the performance of the proposed estimators in finite size samples. An application to a real survey on opinions towards immigration is also included.

Suggested Citation

  • Maria del Mar Rueda & Antonio Arcos & David Molina & Maria Giovanna Ranalli, 2018. "Estimation Techniques for Ordinal Data in Multiple Frame Surveys with Complex Sampling Designs," International Statistical Review, International Statistical Institute, vol. 86(1), pages 51-67, April.
  • Handle: RePEc:bla:istatr:v:86:y:2018:i:1:p:51-67
    DOI: 10.1111/insr.12218
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12218
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Mar Rueda & Maria Giovanna Ranalli & Antonio Arcos & David Molina, 2021. "Population empirical likelihood estimation in dual frame surveys," Statistical Papers, Springer, vol. 62(5), pages 2473-2490, October.
    2. Daniela Cocchi & Lorenzo Marchi & Riccardo Ievoli, 2022. "Bayesian Bootstrap in Multiple Frames," Stats, MDPI, vol. 5(2), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:86:y:2018:i:1:p:51-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.