IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v86y2018i1p136-159.html
   My bibliography  Save this article

Robust Small Area Estimation under Spatial Non†stationarity

Author

Listed:
  • Claudia Baldermann
  • Nicola Salvati
  • Timo Schmid

Abstract

The effective use of spatial information in a regression†based approach to small area estimation is an important practical issue. One approach to account for geographic information is by extending the linear mixed model to allow for spatially correlated random area effects. An alternative is to include the spatial information by a non†parametric mixed models. Another option is geographic weighted regression where the model coefficients vary spatially across the geography of interest. Although these approaches are useful for estimating small area means efficiently under strict parametric assumptions, they can be sensitive to outliers. In this paper, we propose robust extensions of the geographically weighted empirical best linear unbiased predictor. In particular, we introduce robust projective and predictive estimators under spatial non†stationarity. Mean squared error estimation is performed by two analytic approaches that account for the spatial structure in the data. Model†based simulations show that the methodology proposed often leads to more efficient estimators. Furthermore, the analytic mean squared error estimators introduced have appealing properties in terms of stability and bias. Finally, we demonstrate in the application that the new methodology is a good choice for producing estimates for average rent prices of apartments in urban planning areas in Berlin.

Suggested Citation

  • Claudia Baldermann & Nicola Salvati & Timo Schmid, 2018. "Robust Small Area Estimation under Spatial Non†stationarity," International Statistical Review, International Statistical Institute, vol. 86(1), pages 136-159, April.
  • Handle: RePEc:bla:istatr:v:86:y:2018:i:1:p:136-159
    DOI: 10.1111/insr.12245
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12245
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priyanka Anjoy, 2023. "Hierarchical Bayes Measurement Error Small Area Model for Estimation of Disaggregated Level Workers Mobility Pattern in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 339-361, June.
    2. Miguel Boubeta & María José Lombardía & Domingo Morales, 2024. "Small area prediction of proportions and counts under a spatial Poisson mixed model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1193-1215, September.
    3. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    4. Ashutosh & Piyush Kant Rai & Ajeet Kumar Singh, 2023. "A Comparative Study on Calibration Approach Based Estimators for Domain Estimation Utilizing Power Function: Revisited," Annals of Data Science, Springer, vol. 10(6), pages 1559-1569, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:86:y:2018:i:1:p:136-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.