IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v82y2014i3p371-391.html
   My bibliography  Save this article

Disclosure-protected Inference Using Generalised Linear Models

Author

Listed:
  • James O. Chipperfield
  • Christine M. O'Keefe

Abstract

type="main" xml:id="insr12054-abs-0001"> Vast amounts of data that could be used in the development and evaluation of policy for the benefit of society are collected by statistical agencies. It is therefore no surprise that there is very strong demand from analysts, within business, government, universities and other organisations, to access such data. When allowing access to micro-data, a statistical agency is obliged, often legally, to ensure that it is unlikely to result in the disclosure of information about a particular person or organisation. Managing the risk of disclosure is referred to as statistical disclosure control (SDC). This paper describes an approach to SDC for output from analysis using generalised linear models, including estimates of regression parameters and their variances, diagnostic statistics and plots. The Australian Bureau of Statistics has implemented the approach in a remote analysis system, which returns analysis output from remotely submitted queries. A framework for measuring disclosure risk associated with a remote server is proposed. The disclosure risk and utility of approach are measured in two real-life case studies and in simulation.

Suggested Citation

  • James O. Chipperfield & Christine M. O'Keefe, 2014. "Disclosure-protected Inference Using Generalised Linear Models," International Statistical Review, International Statistical Institute, vol. 82(3), pages 371-391, December.
  • Handle: RePEc:bla:istatr:v:82:y:2014:i:3:p:371-391
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/insr.12054
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernard Baffour & James Raymer, 2019. "Estimating multiregional survivorship probabilities for sparse data: An application to immigrant populations in Australia, 1981–2011," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(18), pages 463-502.
    2. Bernard Baffour & James Raymer & Ann Evans, 2023. "Recent Trends in Immigrant Fertility in Australia," Journal of International Migration and Integration, Springer, vol. 24(1), pages 47-67, March.
    3. Chipperfield James & Newman John & Thompson Gwenda & Ma Yue & Lin Yan-Xia, 2019. "Prospects for Protecting Business Microdata when Releasing Population Totals via a Remote Server," Journal of Official Statistics, Sciendo, vol. 35(2), pages 319-336, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:82:y:2014:i:3:p:371-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.