IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v76y2008i1p89-105.html
   My bibliography  Save this article

Anomalies in the Foundations of Ridge Regression

Author

Listed:
  • Donald R. Jensen
  • Donald E. Ramirez

Abstract

Errors persist in ridge regression, its foundations, and its usage, as set forth in Hoerl & Kennard (1970) and elsewhere. Ridge estimators need not be minimizing, nor a prospective ridge parameter be admissible. Conventional estimators are not LaGrange's solutions constrained to fixed lengths, as claimed, since such solutions are singular. Of a massive literature on estimation, prediction, cross–validation, choice of ridge parameter, and related issues, little emanates from constrained optimization to include inequality constraints. The problem traces to a misapplication of LaGrange's Principle, unrecognized singularities, and misplaced links between constraints and ridge parameters. Alternative principles, based on condition numbers, are seen to validate both conventional ridge and surrogate ridge regression to be defined. Numerical studies illustrate that ridge regression as practiced often exhibits pathologies it is intended to redress. Les erreurs persistent dans la régression ridge, ses bases, et son utilisation, comme déterminé en Hoerl et Kennard (1970) et plus tard. Il ne faut ni que les estimateurs ridge se réduisent au minimum ni qu'un paramètre ridge soit admissible. Les estimateurs conventionnels ne sont pas les solutions de Lagrange contraintes aux longueurs fixes, comme souvent prétendu, car de telles solutions sont singulières. D'une littérature vaste—sur l'évaluation, la prévision, la validation croisée, le choix du paramètre ridge, et sujets alliés, sujets collectivement connus sous le nom de régression ridge—peu est issu de la minimisation contrainte, même vis à vis les contraintes d'inégalitié. Le problème remonte à une mauvaise application du principe de Lagrange, au manque d'identifier des singularités, et aux liens mal placés entre les contraintes et les paramè tres ridge. Des principes alternatifs, basés sur des numéraux de condition, peuvent être vus comme validant ridge conventionnelle et la régression de ridge succédanée, ce dernier àêtre défini. Les études numériques illustrent que la régression ridge, comme practiquée, montrent souvent des pathologies qu'il vise à redresser.

Suggested Citation

  • Donald R. Jensen & Donald E. Ramirez, 2008. "Anomalies in the Foundations of Ridge Regression," International Statistical Review, International Statistical Institute, vol. 76(1), pages 89-105, April.
  • Handle: RePEc:bla:istatr:v:76:y:2008:i:1:p:89-105
    DOI: 10.1111/j.1751-5823.2007.00041.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2007.00041.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2007.00041.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    2. Jan Gertheiss & Gerhard Tutz, 2009. "Penalized Regression with Ordinal Predictors," International Statistical Review, International Statistical Institute, vol. 77(3), pages 345-365, December.
    3. R. Salmerón & J. García & C. B. García & M. M. López Martín, 2017. "A note about the corrected VIF," Statistical Papers, Springer, vol. 58(3), pages 929-945, September.
    4. Prasenjit Kapat & Prem K. Goel, 2010. "Anomalies in the Foundations of Ridge Regression: Some Clarifications," International Statistical Review, International Statistical Institute, vol. 78(2), pages 209-215, August.
    5. Santiago Velilla, 2018. "A Note on Collinearity Diagnostics and Centering," The American Statistician, Taylor & Francis Journals, vol. 72(2), pages 140-146, April.
    6. Sylvain Sardy, 2008. "On the Practice of Rescaling Covariates," International Statistical Review, International Statistical Institute, vol. 76(2), pages 285-297, August.
    7. José García & Román Salmerón & Catalina García & María del Mar López Martín, 2016. "Standardization of Variables and Collinearity Diagnostic in Ridge Regression," International Statistical Review, International Statistical Institute, vol. 84(2), pages 245-266, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:76:y:2008:i:1:p:89-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.