IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v76y2008i1p28-38.html
   My bibliography  Save this article

Methods for Generating Longitudinally Correlated Binary Data

Author

Listed:
  • Patrick J. Farrell
  • Katrina Rogers‐Stewart

Abstract

The analysis of longitudinally correlated binary data has attracted considerable attention of late. Since the estimation of parameters in models for such data is based on asymptotic theory, it is necessary to investigate the small‐sample properties of estimators by simulation. In this paper, we review the mechanisms that have been proposed for generating longitudinally correlated binary data. We compare and contrast these models with regard to various features, including computational efficiency, flexibility and the range restrictions that they impose on the longitudinal association parameters. Some extensions to the data generation mechanism originally suggested by Kanter (1975) are proposed. L'analyse des données longitudinales corrélées fait récemment l'objet d'un grand intérêt. Comme l'estimation des paramètres des modèles pour de telles données est souvent basée sur des études asymptotiques, il est nécessaire de procéder à des simulations pour explorer les propriétés des estimateurs en petits échantillonages. Dans ce papier, nous présentons une revue des méthodes qui ont été proposées pour générer des données binaires longitudinales corrélées. Nous les comparons sous différents aspects, notamment en termes d'efficience, flexibilité, et des restrictions qu'elles peuvent avoir sur les paramètres dits d'association longitudinale. Quelques extensions, de la méthode suggérée par Kanter (1975) pour générer de telles données, sont aussi proposées.

Suggested Citation

  • Patrick J. Farrell & Katrina Rogers‐Stewart, 2008. "Methods for Generating Longitudinally Correlated Binary Data," International Statistical Review, International Statistical Institute, vol. 76(1), pages 28-38, April.
  • Handle: RePEc:bla:istatr:v:76:y:2008:i:1:p:28-38
    DOI: 10.1111/j.1751-5823.2007.00017.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2007.00017.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2007.00017.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew W. Guerra & Justine Shults, 2014. "A Note on the Simulation of Overdispersed Random Variables With Specified Marginal Means and Product Correlations," The American Statistician, Taylor & Francis Journals, vol. 68(2), pages 104-107, May.
    2. Sergei Leonov & Bahjat Qaqish, 2020. "Correlated endpoints: simulation, modeling, and extreme correlations," Statistical Papers, Springer, vol. 61(2), pages 741-766, April.
    3. Shults, Justine, 2017. "Simulating longer vectors of correlated binary random variables via multinomial sampling," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 1-11.
    4. Modarres, Reza, 2011. "High-dimensional generation of Bernoulli random vectors," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1136-1142, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:76:y:2008:i:1:p:28-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.