IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v69y2001i3p487-504.html
   My bibliography  Save this article

Sampling and Estimation Issues for Annual and Sub‐annual Canadian Business Surveys

Author

Listed:
  • Michael A. Hidiroglou
  • Normand Laniel

Abstract

A typical Business Register (BR) is mainly based on administrative data files provided by organisations that produce them as a by‐product of their function. Such files do not necessarily yield a perfect Business Register. A good BR should have the following characteristics: (1) It should reflect the complex structures of businesses with multiple activities, in multiple locations or with multiple legal entities; (2) It should be free of duplication, extraneous or missing units; (3) It should be properly classified in terms of key stratification variables, including size, geography and industry; (4) It should be easily updateable to represent the “newer” business picture, and not lag too much behind it. In reality, not all these desirable features are fully satisfied, resulting in a universe that has missing units, inaccurate structures, as well as improper contact information, to name a few defects. These defects can be compensated by using sampling and estimation procedures. For example, coverage can be improved using multiple frame techniques, and the sample size can be increased to account for misclassification of units and deaths on the register. At the time of estimation, auxiliary information can be used in a variety of ways. It can be used to impute missing variables, to treat outliers, or to create synthetic variables obtained via modelling. Furthermore, time lags between the birth of units and the time that they are included on the register can be accounted for appropriately inflating the design‐based estimates. Un registre des entreprise typique est construit en se servant de données administratives fournies par des organisations les produisnat comme sous‐produit de leur fonction. L'utilisation de tels fichiers n'est pas sans prhblèmes, et le voeu d'avoir un bon registre n'et pas toujours atteint. Un bon registre des entreprises devrait avoir les caractéristiques suivates: (1)il devrait être apte à refléter la nature complexe des entreprises avec des activités multiples, lieux ou avec plusieurs entités légales: (2) il ne devrait pas avoir de double, d'unité superflue ou manquante; (3) il devrajt être classifié correctement par rapport aux variables clés de stification (ex. Taille, Géographie et industrie); (4) il devrait être facilement mis à jour afin de représenter la « plus récente image des entreprises » et ne pas etarder derrière. Cependant, on ne peut pas avoir toutes ces caractéristiques désirables, et ceci résulte en une base de sonadage avec des déficiences telles qu'unités manquantes, structures inexactes ainsi que de la mauvaise information de contact. Ces déficiences peuvent être compensées par utilisation de procédures d'estimation et d'échantillonnage appropriées. par exemple, on peut concevoir les échantillons en se servant de bases multiples, et on peut augmenter la taille de l'échantillon afin de tenir compte de la classification incorrecte et des unités mortes sur le registre. Lors de l'estimation, et comme aide pour la détection et le traitemetn des données aberrantes; ou puor la crétion de variables synthétiques obtenues par modèle. De plus, on peut tenir compte des décalages de temps entre la naissance des unités et de leur apparitio sur le registre en pondérant convenablement l'échantillon.

Suggested Citation

  • Michael A. Hidiroglou & Normand Laniel, 2001. "Sampling and Estimation Issues for Annual and Sub‐annual Canadian Business Surveys," International Statistical Review, International Statistical Institute, vol. 69(3), pages 487-504, December.
  • Handle: RePEc:bla:istatr:v:69:y:2001:i:3:p:487-504
    DOI: 10.1111/j.1751-5823.2001.tb00471.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2001.tb00471.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2001.tb00471.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joachim Merz, 2002. "Zur Kumulation von Haushaltsstichproben," FFB-Discussionpaper 37, Research Institute on Professions (Forschungsinstitut Freie Berufe (FFB)), LEUPHANA University Lüneburg.
    2. Dong Hua & Meeden Glen, 2016. "Constructing Synthetic Samples," Journal of Official Statistics, Sciendo, vol. 32(1), pages 113-127, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:69:y:2001:i:3:p:487-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.