IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v69y2001i3p385-398.html
   My bibliography  Save this article

Idiot's Bayes—Not So Stupid After All?

Author

Listed:
  • David J. Hand
  • Keming Yu

Abstract

Folklore has it that a very simple supervised classification rule, based on the typically false assumption that the predictor variables are independent, can be highly effective, and often more effective than sophisticated rules. We examine the evidence for this, both empirical, as observed in real data applications, and theoretical, summarising explanations for why this simple rule might be effective. La tradition veunt qu'une règle très simple assumant l'independance des variables prédictives. une hypothèse fausse dans la plupart des cas, peut être très efficace, souvent même plus efficace qu'une méthode plus sophistiquée en ce qui concerne l'attribution de classes a un groupe d'objets. A ce sujet, nous examinons les preuves empiriques, et les preuves théoriques, e'est‐a‐dire les raisons pour lesquelles cette simple règle pourrait faciliter le processus de tri.

Suggested Citation

  • David J. Hand & Keming Yu, 2001. "Idiot's Bayes—Not So Stupid After All?," International Statistical Review, International Statistical Institute, vol. 69(3), pages 385-398, December.
  • Handle: RePEc:bla:istatr:v:69:y:2001:i:3:p:385-398
    DOI: 10.1111/j.1751-5823.2001.tb00465.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2001.tb00465.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2001.tb00465.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Becker, Sascha O. & Pascali, Luigi, 2016. "Religion, Division of Labor and Conflict: Anti-Semitism in German Regions over 600 Years," CAGE Online Working Paper Series 288, Competitive Advantage in the Global Economy (CAGE).
    2. Sascha O. Becker & Luigi Pascali, 2019. "Religion, Division of Labor, and Conflict: Anti-semitism in Germany over 600 Years," American Economic Review, American Economic Association, vol. 109(5), pages 1764-1804, May.
    3. Aletti, Giacomo, 2018. "Generation of discrete random variables in scalable frameworks," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 99-106.
    4. Gediminas Adomavicius & Yaqiong Wang, 2022. "Improving Reliability Estimation for Individual Numeric Predictions: A Machine Learning Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 503-521, January.
    5. Brighton, Henry, 2020. "Statistical foundations of ecological rationality," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-32.
    6. DE CNUDDE, Sofie & MARTENS, David & EVGENIOU, Theodoros & PROVOST, Foster, 2017. "A benchmarking study of classification techniques for behavioral data," Working Papers 2017005, University of Antwerp, Faculty of Business and Economics.
    7. Marvin, Hans J.P. & Bouzembrak, Yamine, 2020. "A system approach towards prediction of food safety hazards: Impact of climate and agrichemical use on the occurrence of food safety hazards," Agricultural Systems, Elsevier, vol. 178(C).
    8. Marbac, Matthieu & Vandewalle, Vincent, 2019. "A tractable multi-partitions clustering," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 167-179.
    9. Rajeev D S Raizada & Yune-Sang Lee, 2013. "Smoothness without Smoothing: Why Gaussian Naive Bayes Is Not Naive for Multi-Subject Searchlight Studies," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:69:y:2001:i:3:p:385-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.